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Abstract. This paper presents an underflow attack performed on Java Card 
platforms. This underflow is based on the dup_x instruction that can be used in 
order to read and modify the current context of execution of the attacker’s 
application. We first detail the theoretical and practical attack path by 
describing the method that can be used to characterize the platform and exploit 
the obtained information. Secondly, we show how it is possible to set up this 
underflow attack in a way that makes it bypass the current concept of Byte 
Code Verifier. Finally, we describe some countermeasures that can be 
implemented to prevent this kind of attack.  
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1 Introduction 

Java Card technology allows loading and executing a set of applications in a secure 
way on a small device. This technology is widely used by smart card industry today 
and has been proved to reach a high level of security in the common context of use, 
i.e. single issuers mastering their production of Java Card platform and related 
applications. Nowadays, the use of those Java Card platforms is becoming more 
complex. In the field of telecommunication applications, for instance, the context is 
moving to multi-applications provided by different issuers for different Java Card 
platforms. Platforms refer to the combination of a secure hardware device and a 
secure Operating System including the Virtual Machine, the Runtime Environment 
and APIs. The concern is to check how multiple applets, loaded on a Java Card 
platform by multiple actors, can be handled in a secure way and maintain the security 
of the product over its whole lifecycle.  
 Open Java Card platforms, enabling post-issuance applet loading and induce a new 
actor that is responsible of application validation. Indeed, the Verification Authority is 
in charge of verifying the basic application against the platform guidance. It shall 
include at least an off-card verification of the application. If the application is invalid, 
it is rejected and cannot be loaded onto the targeted platform. Therefore, an attacker 
has two possibilities to bypass the concept of Byte Code Verification: either 



developing a malicious application in a way that cannot be detected by the Off-Card 
Verifier, or implementing a combined attack in order to perturb the application 
behaviour during its execution using a laser or ElectroMagnetic pulse device. In the 
first case, all logical attacks using application file format manipulation are to be 
discarded otherwise they will be detected by the Off-Card Verifier. The attacker needs 
so to identify weaknesses on the Java Card platform at JCRE (Java Card Runtime 
Environment) level or at JCVM (Java Card Virtual Machine) level that could allow 
performing purely software attack. It can be a weakness in the platform 
implementation, or a known weakness regarding Java Card platform specification as 
explained in [1]. For instance, the Shareable Interface mechanism can be abused in 
order to perform a type confusion attack that will not be detected by the Off-Card 
Verifier. 
 The Java Card platforms are sensitive to several types of malicious applications. It 
can be address forging attacks by modifying specific CAP component [2] [3], type 
confusion attacks [1] [9] or underflow attacks [8] [10]. The first and second kinds of 
attacks are not relevant in that context: the first one is detected by the Off-Card 
Verifier, and the second one does not allow reading and modifying the context of 
execution of the application directly. On the other hand, the third one enables an 
attacker to manipulate the system information. 
 In this paper, we are going to focus our analysis on the underflow attack that 
allows manipulating the execution frame of a method associated to the current 
executed application. In the first part of this work we descibe the theoretical and the 
practical attack path with a particular focus on the dup_x instruction that will be used 
to read and modify the frame information. In the second part, we detail the means that 
can be used by an attacker in order to bypass the current concept of Byte Code 
Verifier. Indeed, the attack described in this paper can be performed by an attacker 
without privilege. The attacker just needs to be able to develop an application. 
Finally, we present the countermeasures that can be implemented by the developer to 
prevent these attacks.  

2 Underflow attack: state of the art 

The underflow attack presented in this paper differs from previous works. Our 
hypothesis is that the malicious application is verified by Off-Card-Verifier and it 
uses a new type of potential vulnerability in the platform implementation. 

 To go back to previous work, the underflow attacks have been introduced in [8] 
and in [10]. The thesis [10] describes underflow attacks at a high level and is focused 
on countermeasures to protect a platform against such attack. The aim of an 
underflow attack described in [8] is to find the position of the return address onto the 
stack and then modify it in order to execute a code located inside an array. This 
underflow is performed by using non-existing local variables in order to access 
information located below the stack bottom. The purely software attack takes the 
hypothesis that there is no bytecode verification performed on the application (off-
card verification or on-card verification). 
 



 Two different methods that can allow an attacker bypassing the Off-Card 
Verification are described in [1]. The first attack method aims abusing the transaction 
mechanism in order to create a type confusion. This attack is now detected by most of 
the platforms and cannot be applied to underflow anymore. The second attack method 
aims to abuse the Shareable Interface mechanism. The goal is to create type confusion 
using two definitions of interfaces, one for the Client and one for the Server. Actually, 
the attack methods described in [1] only focus on type confusion. 

 The aim of our paper is to describe a new way of exploiting the underflow attack 
despite off-card verification. Indeed, this paper describes an underflow using the 
instruction dup_x that is usually not checked by on card countermeasures due to the 
fact that the stack pointer is not decreasing at the end of the instruction processing 
(this kind of verification is dependent of the platform implementation). The final goal 
of our attack is to replace the context of the attacker’s method with the JCRE context 
in order to gain access to out-of-context data to be able to dump and modify 
information link to the platform or to a sensitive application.  
 This attack considers that the malicious application is verified by Off-Card-
Verifier. Indeed, we have extended the attack described in [1] in order to create an 
underflow. We have implemented two different ways of bypassing the off-card 
verification: (1) abusing the Shareable Interface mechanism to create an underflow, 
(2) abusing the library versioning to create an underflow. All steps of the attack will 
be further described in this paper.  

3 Underflow attack: theoretical attack path 

The aim of the underflow attack is to retrieve and modify the elements located before 
the stack of the current executed method. 

 All the instructions that pop elements from the stack can be used in order to 
perform a stack underflow attack. There are two kinds of instructions, those that lead 
to a modification of the stack pointer (sp) and those that pop elements from the stack 
without decreasing the stack pointer at the end of their processing. In the first case, if 
the operation is performed on an empty stack, the stack pointer will be located below 
the stack bottom at the end of the instruction treatment. This kind of attack can be 
done, for instance, with the instruction putstatic: 



 
 

Fig. 1: putstatic_s instruction on empty stack 
  
 Once the stack pointer has been corrupted, an attacker can update any information 
located between the stack pointer and the stack bottom: 
 

 
Fig. 2 : Modification of the frame information thank to sconst_0 

 
 In the second case, the stack pointer is not decreased at the end of the instruction 
processing but during the processing. It is for instance the case of the instruction 
dup_x. The instruction dup_x takes two parameters coded on 1 byte: 

• m, the high nibble, that is in the range 1 to 4.  
• n , the low nibble, that is in the range 0 to m+4. 

 If n has a value different from 0, the top m words of the operand stack are 
duplicated and the copied words are inserted n words down in the operand stack. 
When n equals 0, the top m words are copied and placed on top of the stack [4]. 
The figure below show the impact of a dup_x 32 on an empty stack (m is equal to 2). 
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Fig. 3: dup_x instruction in order to read data located below the stack bottom. The two short at 
the top of the stack (m equal to 2) will be duplicated at the top of the stack (n equal to 0). 
  
 This instruction can also be misused in order to update information located below 
the stack bottom. In this case, the attacker needs to provide a “n” different from 0:   

 

 
Fig. 4: dup_x instruction in order to modify data located below the stack bottom. The two 
shorts on the top of the stack (m equal to 2) will be duplicated at 4 shorts down the stack top (n 
equal to 4). 
 
 By using the underflow of the stack, an attacker will be able to manipulate the 
following information (the order of this information depends on the platform 
implementation): 

• The local variables of the executed/caller method 
• The parameters of the executed/caller method 
• The frame information of the executed/caller method. This structure contains the 

context of execution of the executed or of the caller method. 

 In most implementation, the frame is located just before the stack. An attacker will 
then be able to modify the context of execution of his method. 
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3 Underflow attack: practical attack path 

An attacker can characterize each bytecode that manipulates the stack in order to 
identify those that are not subject to security verification regarding underflow attacks. 
Each instruction can be invoked on an empty stack and then the platform behaviour is 
analysed for each case. In this paper, we focus our analysis on the byte code dup_x. 

3.1  Underflow attack using dup_x  

Characterisation of the underflow data 
 The first step of the attack aims reading the data located below the stack, and then 
to analyse and characterize each byte reading. The dup_x instruction allows reading 8 
bytes located below the stack bottom (m equal to 4 and n equal to 0). 
 Depending on the platform implementation, the attacker may localize  

• the frame information of the current/caller method,  
• the stack number of the current/caller method,  
• the stack of caller method, the number of local variables of the current/caller 

method,  
• the local variable of the current/caller method.  

 The attacker needs to characterize the frame information in order to find the 
position of the context. 

 The identification of information related to the attacker’s method (stack, local 
variable, system information) can be done by performing an underflow inside 
different methods of the same applet. To be efficient, these methods need to have 
different local variable numbers and different stack sizes. Moreover, the parameters 
used for each method need to be initialized with identifiable patterns: 

public void local_method1 (short foo) 
{ 
  short var1 = (short) 0xBAB1; 
  short var2 = (short) 0xDED1; 
  short var3 = (short) 0xFEF1; 
  short var4 = local_method2((byte)0xDE,(byte)0xED); 
  return; 
} 
   
public short local_method2 (byte foo, byte bar) 
{ 
  short var1 = (short) 0xBAB2; 
  short var2 = (short) 0xDED2; 
  short var3 = local_method3(); 
  return (short)0xDDFF; 
} 
    



public short local_method3 () 
{ 
  //Perform the underflow attack 
  attr1 = (short)0x3333; 
  return (short)0xCDCD; 
} 

 

 The following dump is obtained when an attacker performs an underflow using the 
instruction dup_x on an open Java Card platform:  
0x01 0x0C 0x00 0x01 0xDE 0xD2 0xBA 0xB2 
 
 The state of the stack is the following: 

 
Fig. 5: State of the stack after an underflow attack using dup_x instruction 

 
 By analysing the dump obtained thanks to the instruction dup_x on an open Java 
Card platform, we can notice that the 3rd and the 4th words correspond to the local 
variables of the local_method2. 
 
 The identification of the context of execution of the attacker’s applet can be done 
by loading two underflow malicious applications having different AIDs but identical 
code. In this case, the two applications will have the same local definition but differ 
on the context ID. As an example, the following data can be read when an attacker 
performs an underflow in an internal method of his applet: 

• Underflow attack with dup_x 64 instruction on an applet APP1 with a context 
APP1_context:  
0x01 0x0C 0x00 0x01 0xDE 0xD2 0xBA 0xB2  

• Underflow attack with dup_x 64 instruction on an applet APP2 with a context 
APP2_context: 
0x01 0x18 0x00 0x01 0xDE 0xD2 0xBA 0xB2  

The first two bytes are different for the two applets: it is linked to the context of the 
current executed applet. The second byte needs to be fixed to 0x00 in order to take the 
JCRE context. 
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Exploitation of the underflow 
 Once the frame information has been localized and in particular the context of the 
method of the attacker, the dup_x instruction can be used with n, different from zero, 
in order to modify the execution context (as described in the Figure 4). Indeed, this 
instruction allows modifying 8 bytes located below the stack (m equal to 4 and n 
equal to 8). 
 The attacker can then update the context of his own method with the identifier of 
the JCRE’s context (equal to 0x00) to gain access to the whole card content. Indeed, 
there is no firewall restriction for the JCRE [5] and as long as JCRE’s context is 
granted to a method then it can read and modify any defined object in memory. 
 The instructions baload, saload or getfield can be used in order to read specific 
address in the memory. Indeed, these instructions will allow accessing different types 
of objects in the memory: byte array, short array and class.  An address forging 
operation needs to be performed inside the application in order to be able to access to 
the targeted address (push the targeted address onto the stack). 
 The attacker needs then to reverse the memory access process. To perform this 
analysis, he can dump his application code and data in order to understand object 
representation into the memory: 

• package/applet/instance (AIDs, CAP components, …) 
• code 
• standard objects (byte array, class, …) 
• sensitive objects (OwnerPIN, Keys, …) 

 
 Once the characterisation has been done, the attacker is able to identify all these 
parts for other applications loaded onto the card. The instructions bastore, sastore and 
putfield can then be used in order to modify all objects read in memory. 
 By targeting the code of a sensitive application, he will be able to modify it.  For 
instance, he can replace, directly in memory, sensitive checks by NOPs in order to 
avoid security/error detections. He can also modify the code of the Owner PIN object 
inside the memory by replacing the ciphered PIN representation of the sensitive 
application by the ciphered PIN representation of the attacker (if the representation of 
objects is not diversified by object). 

3.2  Byte Code Verification 

Off-Card Verifier detects classical underflow attack. Nevertheless, an attacker has 
several means to bypass this verification: 

• Abuse the Shareable Interface mechanism as published in [1]: we have extended 
and adapted the attack described in [1] in order to create an underflow. 

• Abuse the Library mechanism 
• Use combined attack as published in [6] 



Abusing the Shareable Interface mechanism. The Shareable Interface mechanism 
is used to share services between applications in different contexts. An Interface is 
defined and contains all methods that will be shared. A Server implements these 
methods and builds the Shareable Interface Object (object instance of the class that 
implement the Shareable Interface).  
 A Client uses these methods by obtaining the Shareable Interface Object thanks to 
the method getAppletShareableInterfaceObject(AID serverAID, byte parameter). 
 The Shareable Interface mechanism can be abused in order to create a type 
confusion attack as described in [1]. Indeed, the Client is generated using one 
definition of the interface I1 with a function F that take, for instance, a byte array as 
parameter. The Server is generated using another definition of the interface I2 with a 
function F that takes a short array as parameter. During the application validation, the 
Client will be verified with I1 and the Server with I2, the verifications are done at two 
different times. That’s why no error will be detected during the validation. Regarding 
application installations, only the interface I2 will be loaded onto the card. During the 
Client applet execution, the type confusion is created and can be exploited by the 
attacker (byte array read as a short array). 
 This principle can be applied to the underflow attack. Indeed, the method definition 
will be the following for the two interfaces: 

• The Client is generated using the definition of the interface I1 (the Client 
contains the underflow attack exploitation part): 
//creation of the Underflow onto the card 
public int myShareableMethod_underflow(short S1);  

//Address forging onto the card 
public byte[] myShareableMethod_shortToByteArray(); 
public short[] myShareableMethod_shortToShortArray(); 
public myClass myShareableMethod_shortToMyClass(); 
 

• The Server is generated using another definition of the interface I2:  
//creation of the Underflow onto the card 
public void myShareableMethod_underflow(short S1); 

//Address forging onto the card 
public short myShareableMethod_shortToByteArray (); 
public short myShareableMethod_shortToShortArray ();  
public short myShareableMethod_shortToMyClass (); 
 

 The function myShareableMethod_underflow is called just before performing the 
underflow attack as illustrated in the following code extract: 

 
sspush  frame_1;  
sspush  frame_2;  

 myShareableMethod_underflow(); //returns INT in I1 
 dup_x 36; //Underflow of 4 bytes  

    //because it returns void indeed 
  



 The instructions sspush are used to push the new value of the frame on the top of 
the stack (frame_1 and frame_2). Once the underflow is performed, the dup_x 
instruction allows assigning the new frame information. 
 
 Then the functions myShareableMethod_shortToByteArray, 
myShareableMethod_shortToShortArray and myShareableMethod_shortToMyClass 
are used to create address forging. The aim is to read a short as a byte array, a short 
array or a class object. The short used in order to forge address is the one given as 
parameter of myShareableMethod_underflow. 
 
 During the off-card verification of the Client with the Interface I1, no error will be 
detected. Nevertheless, during on-card execution with the Interface I2: 

1. No int will be pushed onto the stack by the method 
myShareableMethod_underflow. The underflow will be created. 

2. The underflow is exploited by the attacker: he is able to modify the current 
context by the JCRE context that is equal to 0. 

3. A short will be returned by myShareableMethod_shortToByteArray, 
myShareableMethod_shortToShortArray and 
myShareableMethod_shortToMyClass and will be assigned as a reference to 
byte array, short array and class object. The address will be forged. The attacker 
will be able to access to the targeted address. 

  
Abusing the Libray mechanism. A Java Card platform can contain some libraries 
(applications that are not applets). A library is never instantiated; it contains only 
methods that can be used by other application loaded onto the card. 
 As for the Shareable Interface mechanism, an attacker can abuse the Library 
mechanism. The concept of the attack path is the same. Indeed, an attacker develops a 
library in two versions: 

• Library L1 v1.0, this version of the library will be used for the verification of 
the application:  

 public int myShareableMethod() 

As the method myShareableMethod returns an int, the underflow attack is not 
detected by the tool. 

• Library L1 v1.1, this version of the library will be loaded onto the card: 
public void myShareableMethod() 

During the execution of the malicious application, the method 
myShareableMethod that return void is called. The underflow is activated and 
can be exploited by the attacker. 

 
Creating an underflow with combined attack. A combined attack [6] is a 
combination between a logical attack and a physical attack.  
 A combined attack can be used to create a mutant application. A mutant 
application [7] is an application that is well-formed and that becomes malicious 
during its execution by injecting a fault using a laser or an electromagnetic pulse in 
order to modify transiently a specific bytecode execution. Indeed, an attacker 



develops a well formed applet (successfully verified by an Off-Card Verifier) that is 
designed such that the modification of one byte by a NOP allows him to execute a 
malicious code, in our case the underflow attack. The applet of the attacker is loaded 
onto the card. The attacker then modifies the interpretation of specific instruction 
during the code execution using fault injection. The instruction is interpreted as a 
NOP and consequently, the instruction’s parameters are not processed and are 
interpreted as new instructions. 
 A combined attack can also be performed in order to avoid on-card security checks 
or to bypass on-card countermeasures. An attacker can use it in order to bypass 
verification made during application loading. Indeed, the application of the attacker 
uses a library L2 that declares the following method: public int 
myShareableMethod(). The version of the library is 2.0. The application of the 
attacker is well-formed and will be verified with success. Nevertheless, the platform 
contains a library L1 with the following method: public void myShareableMethod(). 
The version of the library onto the card is 1.0. During the application loading, the 
platform will ensure that each imported package has the same major version than the 
one loaded onto the card. An attacker can perform a fault injection in order to bypass 
this specific security check. In this case, the application will be loaded successfully 
and the underflow can be exploited during the application execution. 

4 Countermeasures 

The underflow attack can be covered by organisational measures or by technical 
countermeasures. 

4.1  Organisational measures 

The developer can add specific mandatory requirements in the guidance. Indeed, 
requirements related to versioning and imported packages can be sufficient to cover 
the purely software attack abusing the Shareable Interface or Library mechanism. In 
such case, the attack will be detected during the application verification process by 
the Verification Authority and the application will be rejected.  
 Nevertheless, this countermeasure does not cover combined attacks. Only technical 
measures can be used to cover that kind of attacks. 

4.2 Technical countermeasures 

The developer can implement dedicated countermeasures onto the Java Card Virtual 
Machine in order to defend against the underflow attack. Indeed, he needs to add 
security checks upon the processing of each instruction that pop elements from the 
stack in order to ensure that the stack pointer is valid, during and after the instruction 
processing. 



 Nevertheless, an attacker could perform a combined attack to bypass this 
countermeasure: the attacker develops his malicious application, loads it onto the 
card, and finally performs a fault injection attack upon the execution of the 
application in order to avoid the underflow countermeasure. Therefore, in order to 
implement an efficient underflow countermeasure, the code must also be protected 
against faults injection attacks. 

5 Conclusion 

Open Java Card platforms, enabling post-issuance applet loading, induce a new type 
of attackers having privileges. These attackers are untrusted application developers or 
application loaders that are able to choose the application that will be loaded onto the 
card. In such context, the platform with its guidance needs to be protected against 
malicious applications.  
 We have presented, in this paper, an underflow attack that exploits the dup_x 
instruction in order to read and modify the current context of execution of the 
attacker’s application. Once this modification is done, the attacker is able to acquire 
the context of the JCRE and so to read and modify out-of-context data. This attack 
can be developed in such a way that the malicious application will bypass the concept 
of Byte Code Verifier. Indeed, the validation of application is done in a specific time 
and the validation of the library or of the Shareable service is done at another time. 
This underflow attack can also be exploited through other instructions that pop 
elements from the stack. This attack has been performed with success on several Java 
Card platforms. 
 Several solutions exist to protect the platform against this kind of attacks, either 
organisational - if the guidance includes specific requirements -, or technical - if the 
platform implements dedicated security checks upon instructions processing -. 
 Finally, this paper shows that the current concept of Byte Code Verification is not 
sufficient to prevent all kinds of malicious applications.  During a platform 
evaluation, the overall malicious application attack paths need to be taken into 
account. A specific care is to be applied on the platform guidance in order to ensure 
that it will contain all the necessary requirements to cover logical attack path.  

References 

1.  Mostowski, W., Poll, E.: Malicious code on java card smartcards: Attacks and 
countermeasures. Smart Card Research and Advanced Application Conference (CARDIS 
2008), pp. 1-16 (2008) 

2.  Lanet, J.L., Faugeron, E., Dessiatnikoff, A.: EMAN: Un cheval de Troie dans une carte à 
Puce. Computer & Electronics Security Applications Rendez-vous (CESAR 2008), pp. 198 
(2008) 

3. Lanet, J.L., Iguchi-Cartigny, J., Évaluation de l’injection de code malicieux dans une Java 
Card, SSTIC 09 (2009) 

4.  Java Card Virtual Machine Specification - Java Card Platform, Version 2.2.2 (March 2006)  



5.  Java Card Runtime Environement specification - Java Card Platform, Version 2.2.2 (March 
2006) 

6.  Guillaume Barbu, Hugues Thiebeauld, Vincent Guerin:  Attacks on Java Card 3.0 
Combining Fault and Logical Attacks. Smart Card Research and Advanced Application 
Conference (CARDIS 2010), (2010).  

7. Eric Vetillard, Anthony Ferrari: Combined Attack and Countermeasures. Smart Card 
Research and Advanced Application Conference (CARDIS 2010), pp. 133-147 (2010). 

8.  Guillaume Bouffard, Julien Iguchi-Cartigny, Jean-Louis Lanet: Combined Software and 
Hardware Attacks on Java Card Control Flow. Smart Card Research and Advanced 
Application Conference (CARDIS 2011), pp. 283-296 (2011). 

9.  Karsten Nohl: Rooting SIM cards. BlackHat 2013. 
10. Pierre Girard thesis: Contribution à la sécurité des cartes à puce et de leur utilisation, 

University of Limoges (2011).  
 


