
From New Technologies to New Solutions

Exploiting FRAM Memories to Enhance Physical Security

Stéphanie Kerckhof1, François-Xavier Standaert1, Eric Peeters2

1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.
2 Texas Instruments, Dallas, Texas, USA.

e-mails: stephanie.kerckhof@uclouvain.be; fstandae@uclouvain.be; e-peeters@ti.com

Abstract. Ferroelectric RAM (FRAM) is a promising non-volatile mem-
ory technology that is now available in low-end microcontrollers. Its main
advantages over Flash memories are faster write performances and much
larger tolerated number of write/erase cycles. These properties are prof-
itable for the efficient implementation of side-channel countermeasures
exploiting pre-computations. In this paper, we illustrate the interest of
FRAM-based microcontrollers for physically secure cryptographic hard-
ware with two case studies. First we consider a recent shuffling scheme
for the AES algorithm, exploiting randomized program memories. We
exhibit significant performance gains over previous results in an Atmel
microcontroller, thanks to the fine-grained programmability of FRAM.
Next and most importantly, we propose the first working implementa-
tion of the “masking with randomized look-up table” countermeasure,
applied to reduced versions of the block cipher LED. This implementa-
tion provides unconditional security against side-channel attacks (of all
orders! ) under the assumption that pre-computations can be performed
without leakage. It also provides high security levels in cases where this
assumption is relaxed (e.g. for context or performance reasons).

1 Introduction

Providing (physical) security against side-channel attacks is a challenging task
for cryptographic designers [10]. This is especially true for low-cost embedded
devices, with strongly constrained resources. Typical examples of countermea-
sures in this context include masking [3] and shuffling [9]. But in both cases, the
concrete security levels attained by the protected implementations highly depend
on hardware assumptions, in particular the amount of noise in the measurements
which may not be sufficient, e.g. in 8-bit devices [19, 20]. The performance over-
head they imply can also be significant [7, 15]. As a result, such countermeasures
are usually combined in a somewhat heuristic manner, in order to ensure “prac-
tical” security against a wide enough category of adversaries [16].

In parallel to these advances, some more recent works have tried to for-
malize the problem of physical security, in order to extend the guarantees of
provable security from algorithms and protocols to implementations. The main
challenge in this case is to find relevant restrictions of the adversaries. A typical



example is the one of leakage-resilient cryptography, where the assumption is
that the information leakage of a single algorithm run is bounded (see, e.g. [5]
for an early reference, [17] for a recent one, and many other proposals in be-
tween). Alternatively, another line of work is based on the assumption of secure
pre-computations, e.g. in order to prevent “continual memory attacks”, as for-
malized by Brakerski et al. [2] and by Dodis et al. [4]. The one-time programs
introduced at Crypto 2008 are another (extreme) way to exploit such secure
pre-computations [6]: they essentially correspond to a program that can be exe-
cuted on a single input, whose value can be specified at run time. Nevertheless,
the practical relevance of these solutions is still limited by sometimes unrealistic
hardware assumptions and (mainly), by large performance overheads.

In this paper, we start from the observation that both for practice-oriented
and theory-oriented countermeasures against side-channel analysis, the exploita-
tion of secure pre-computations is highly related to the problem of fast and ef-
ficient non-volatile storage. In this context, a significant drawback of the main-
stream Flash memories is that write operations are slow and energy-consuming.
Furthermore, their number of tolerated write/erase cycles is also limited (from
10k to 100k, typically), which may prevent their frequent use for cryptographic
operations. Interestingly, the recently available Ferroelectric RAM (FRAM) pro-
vides a solution to these issues1. As a result, we investigate whether it can be
used as a technology enabler to improve the performances and security of pro-
tected implementations. For this purpose, we first consider the shuffling coun-
termeasure, and its instantiation for the AES algorithm based on randomized
program memories proposed in [20]. We show that FRAM allows significantly
improved performances in terms of pre-computation time. Next, we discuss the
application of these new memories to the Randomized Look-Up Table (RLUT)
countermeasure [18]. It can be viewed as a type of one-time program specialized
to side-channel analysis, or as a generic masking scheme that provides uncondi-
tional security against side-channel attacks of all orders (i.e. independent of the
statistical moment estimated by the adversary). We provide the first working
implementation of this solution applied to reduced versions of the block cipher
LED [8], and analyze its performances in various settings. In particular, we inves-
tigate the contexts of complete and secure pre-computations, and the tradeoffs
corresponding to partial (and partially leaking) ones. We reach performances
that are close to higher-order masking in the latter case [15], while complete and
secure pre-computations also ensures much higher security levels at practically
reachable cost. Therefore, our results suggest that FRAM is a promising solu-
tion for improving the security of low-cost tokens such as smart cards, especially
when some pre-computations can be performed in a safe environment.

1 Strictly speaking, FRAM is not a new technology as it was introduced as a high-
security alternative to Flash memories back in the early 2000s by Fujitsu. However,
FRAM-based smart cards did not make it to mass market at that time, due to
excessive manufacturing costs and limited ability to reduce cell transistor size.



The rest of the paper is structured as follows. Section 2 provides the necessary
background on FRAM and discusses our security model. Section 3 contains the
implementation results of the shuffling with randomized program memory coun-
termeasure, and their comparison with the previous work from Asiacrypt 2012.
Section 4 describes the RLUT countermeasures, our proposed implementation
and the various tradeoffs it provides. Finally, conclusions are in Section 5.

2 Background

2.1 FRAM microcontrollers

Standard solutions for non-volatile storage such as Flash and EEPROM usually
suffer from long programming times, as well as a high voltage required to pro-
gram bit cells with hot carrier injection or Fowler-Nordheim tunneling effect.
In addition, the charge pump overhead as well as the high current supply they
require make these technologies not ideal for applications where frequent data
logging or ultra-low-power write operations are needed (e.g. all RF applications
such as e-passport, RF Banking Card, . . . ). FRAM is a promising alternative
that combines the advantages of non-volatile memories with much faster write
speed (e.g. 125 ns per 64-bit word for the 130-nm TI FRAM technology exploited
in MSP430FR devices), less power (82 uA/MHz active power in the same tech-
nology) and infinite (1015) write-erase cycle performances.

FRAM stores information through the use of a stable electric dipole found in
ferroelectric crystals (insensitive to the magnetic field). The polarization-voltage
hysteresis loops for such materials are very similar to the B-H curve of magnetic
materials. Exploiting this fact, a FRAM bit cell structure consists of a ferro-
electric capacitor containing the crystal. The capacitor is connected to a plate
line, bit lines, and a transistor switch to access it. This is also referred to as
a 1T-1C memory cell mode (Figure 1, left). By contrast, 2T-2C memory cell
modes (Figure 1, right) would store the data as 2 opposite values in each 1T-1C
cell of its structure (similar to what is found in EEPROM for instance). Reading

Fig. 1: FRAM bit cell modes: left: 1T-1C structure, right: 2T-2C structure.



the data from FRAM occurs by placing a voltage on the plate line. The idea is
that for every read operation, one tries to set the cell to a 0 state. If the voltage
causes the dipoles inside the capacitor to flip its orientation, then a large charge
Q is generated on the bit line. On the contrary, if the orientation of the dipole is
already negative prior to applying the voltage to the plate line in a read cycle,
then the dipole direction does not flip, and only a small charge Q is induced
on the bit line. The difference can be measured by a sense amplifier. An impor-
tant consequence of this description is that FRAM reads are destructive, and
therefore require a refresh process. Nevertheless, this process is automatically
completed by the controller and therefore transparent to the user.

In this paper, we used a microcontroller of the MSP430FRxxxx family from
Texas Instruments. This type of microcontrollers provides an ultra-low-power
16-bit RISC CPU, and a set of instructions performing operations on either 8
or 16 bits of data. The available non-volatile FRAM memory can have a size of
up to 64 kilobytes (microcontrollers with 128-and 256-kilobyte capabilities are
already announced). All the developed code was made for a MSP430FR5739
microcontroller, containing 16 kilobytes of FRAM, and was tested using the
MSP-EXP430FR5739 experimenter’s board and Code Composer Studio 5.3.

2.2 Security model

The following sections mainly aim at demonstrating the efficiency of FRAM-
based cryptographic computations. Yet, since we consider implementations pro-
tected against side-channel attacks, it is important to say a few words about the
security model we rely on. Both for the shuffling in Section 3 and for the RLUT
countermeasure in Section 4, we can consider two alternatives:

1. Secure pre-computations. That is, the permutations used in shuffling and the
randomized program used in RLUT are pre-computed without leakage, prior
to the execution of the cryptographic algorithm. As a result, the security of
the shuffling is exactly the one analyzed at Asiacrypt 2012 [20]. And the
security of the RLUT countermeasure is unconditional: even an adversary
accessing the (identity) leakage of all the intermediate computations in the
target implementation would not recover any information about its key.

2. Leaking pre-computations. That is, the permutations used in shuffling and
the randomized program used in RLUT are computed online, and leaking
information. In this case, the security of both countermeasures is less inves-
tigated, and essentially depends on how much information is leaked during
pre-computation (in fact, the same observation holds for most countermea-
sures exploiting randomness, e.g. masking). Note however that the random-
ness used to protect these implementations is generated on-chip, and is never
output. Hence, adversaries can only mount SPA attacks against it. As a re-
sult, we can informally state that our implementations will remain secure in
this context, as long as one can guarantee SPA security for this part of the
computation (a similar informal separation between SPA and DPA was used
to argue about the security of fresh re-keying schemes, e.g. in [12]).



Note that in terms of security, the main advantage of FRAM is to make the
first model more realistic. Indeed, one could (at least theoretically) imagine to
implement a randomized program with SRAM memories. But in addition to
performances that would most likely be poor in this case, such a solution should
anyway be implemented online (hence leaking), since SRAM is volatile.

3 Improving past results: the shuffling case

Shuffling the execution order of independent operations is a possible solution to
improve security of cryptographic implementations against side-channel attacks.
The goal of shuffling is to distribute the intermediate cipher values over a given
period of time, so that an attacker will only be able to observe a chosen interme-
diate value at a particular moment in time with a certain probability. A typical
example of independent operations that can be shuffled is the SubBytes layer in
the AES. Indeed, whatever the order in which each of the 16 S-Box’s outputs is
generated, the result of the SubBytes layer will not be affected.

A previous work on shuffling, proposed 3 implementations of the AES on
an Atmel ATMega644p microcontroller [20]: a basic one with double indexing,
an optimized one with randomized execution path, and a variant with random-
ized program memory. In this paper, we focus on this third proposal, for which
FRAM technology provides significant improvements (the two first ones lead to
essentially similar performances, independent of the non-volatile memory used).
Randomizing the program memory corresponds to rewriting the code in a ran-
domized way before each algorithm run. In other words, a pre-computation phase
modifies (inside the code) which registers and memory addresses will be used
during the execution, which then remains essentially the same as an unshuf-
fled one. While promising in principle, such an instantiation of the shuffling idea
faces some limitations when implemented in Flash-based Atmel microcontrollers.
First, even when only a few bytes need to be modified, a complete memory page
must be erased and rewritten, which takes a lot of time (more or less 4.5 mil-
liseconds each time a page is written or erased). Next, the memory can only be
rewritten a limited number of times (namely 10 000). Hence, FRAM-based mi-
crocontrollers are natural candidates to relax these limitations as we now detail.

Implementing the AES algorithm with randomized program memory requires
three main functions. First, a permutation generator must be defined - we used
exactly the same implementation as proposed in [20]. Next, it is necessary to
have an AES description with well defined sets of 16 independent operations, on
which the shuffling can be applied. Although such operations are easily found for
SubBytes and AddRoundKey, their specification is more difficult for ShiftRows

and MixColumns, for which the 16 bytes are not manipulated independently.
This implies that their output cannot be stored at the same location as their
input, resulting in the need of 16 additional bytes of temporary storage. Fur-
thermore, the FRAM microcontroller we use has only 12 CPU registers, which
is not enough to store a complete AES state. Therefore, each independent oper-
ation needs to access the FRAM with absolute addressing, which is more time



consuming than working on registers. As for the implementations of Asiacrypt
2012, dummy key-schedule operations have also been added to the “on-the-fly”
key-schedule, in order to obtain enough independent operations for this part
of the implementation as well [20]. Eventually, the last function needed is the
one randomizing the code before execution. This randomization was achieved by
modifying the bytes of instructions referring to the cipher state’s or round key’s
memory addresses. Interestingly, since the code and the data are both stored in
the same FRAM memory, modifying some bytes of the code or some bytes of
cipher state and round key takes exactly the same amount of time.

Our implementation results are available in Table 1 (and are given for en-
cryption only). For reference, we first implemented an unshuffled version of the
AES in the MSP430FR5739 microcontroller. Even if performance comparisons
obtained with different technologies always have to be considered with care,
it is worth noticing that it is slightly more time-consuming than Atmel ones
(e.g. the open source AES Furious requires 3546 cycles to execute [13]). This
is mainly a consequence of the limited number of registers available in FRAM
microcontrollers, leading to more frequent memory accesses. By contrast and
as expected, the pre-computation time required to shuffle the code is strongly
reduced, from 18 milliseconds in Atmel devices to 0.19 milliseconds (running the
chip at 16 MHz), which corresponds to a ratio of approximately 100. This is the
main advantage of our implementation. Note finally the increased data size and
cycle count for executing the AES in its shuffled version, which is essentially due
to the previously mentioned execution of dummy key-schedules. We conclude
that the overhead required to shuffle the AES algorithm based on a randomized
program memory is now in line with practical applications constraints.

Code Size Data Size Cycle Count

Unprotected AES 1076 52 5800

Shuffled AES

Perm. Generation 194 18 2240
Code Shuffling 418 0 2751
AES execution 2404 146 8479

Total 3016 164 13470

Table 1: AES program size (in bytes) and cycle counts in the MPS430FR5739.

4 Making new results possible: the RLUT case

The previous section described how FRAM memories allow significant speedups
for shuffled implementations exploiting randomized program memories. In this
section, we show how similar ideas can be used to enable the efficient imple-
mentation of the RLUT countermeasure. For this purpose, we first recall the
intuition behind this countermeasure, then describe its application to reduced
versions of the block cipher LED, and finally discuss implementation results.



4.1 Description of the countermeasure

We will focus on the protection of a single S-box that is the most challenging
part of the countermeasure. Intuitively, it is convenient to start from the first-
order Boolean masking depicted in Figure 2. In this scheme, a random mask m
is first added to the sensitive value x which is then sent trough the combination
of a bitwise key addition ⊕ and S-box S. A correction function C is used (taking
both x ⊕m ⊕ k and m as input) in order to produce the output mask q such
that S(x ⊕ m ⊕ k) = S(x ⊕ k) ⊕ q. Such an implementation typically gives
rise to 4 leakage points denoted as L1, L2, L3 and L4 on the figure (L2 being
the combination of two parts). It ideally guarantees that statistical moments
of order 2 will have to be estimated by an adversary in order to recover secret
information. The word “ideally” here refers to the fact that physical defaults
such as glitches can lead to exploitable information in lower-order statistical
moments [11]. For example, the leakage point L2 on the figure corresponds to
the manipulation of x⊕m⊕k leading to La2(x⊕m⊕k), and m leading to Lb2(m),
in parallel. It implies first-order exploitable information if these two parts of
the leakage function are not independent2. Boolean masking can be naturally
generalized to d shares (d = 2 in the example of Figure 2), leading to an (ideal
as well) data complexity increase proportional to (σ2

n)d, with σ2
n the variance of

the noise in the leakage samples, as demonstrated by Chari et al. [3].

From this description, a first step towards the RLUT countermeasure is the
observation that if the master key is fixed and for n-bit S-boxes, one can replace
the computation of S(x⊕k) by a pre-computed table of size 2n×n (the correction
function can be implemented similarly as a table of size 22n×n). It directly leads
to the implementation of Figure 3, which is functionally equivalent to the pre-
vious one, but where the key addition has been “included” in a key-dependent
permutations Pk(x). From the side-channel security point-of-view, it still cor-
responds to a first-order secure implementation. Next, and in order to provide
unconditional security against side-channel attacks of all orders, the main idea
is to replace the Boolean masking operation x ⊕ m by an extension to three
shares denoted as Gi(x,m) = x⊕m⊕ ai, where ai is a n-bit random mask that
is pre-computed in a leakage-free environment. These operations, illustrated in
Figure 4, can also be implemented as tables of size 22n × n, so that the shares
ai will never be manipulated during the “online” execution of the algorithm. If
the G1 (resp. G2) function is refreshed before each run of the protected imple-
mentation, it guarantees that no information can be extracted from the leakage
points (L1, L2) (resp. (L3, L4)). We additionally need G1 and G2 (i.e. their hid-
den ai shares) to be independent, in order to avoid fourth-order leakages taking
advantage of the correlation between the tables’ inputs and outputs. Eventually,
it remains to randomize the permutation Pk(x) (and the correction function C)
in order to completely hide the key, even from identity leakage functions, as
represented in Figure 5. This way, a non-linear S-box can be computed securely.

2 As a typical example, L2 = La
2 + Lb

2 would correspond to an ideal implementation,
while L2 = La

2 · Lb
2 would leak first-order information, as discussed in [19].



Fig. 2: Boolean masking.

Fig. 3: Boolean masking with LUTs.

Fig. 4: Randomized Boolean masking with LUTs.

Fig. 5: Randomized Boolean masking with randomized LUTs.



This leads to an implementation in which the operations G1, G2, R and RC are
pre-computed according to Algorithm 1, and executed according to Algorithm 2.
Extending this S-box computation to a complete cipher is straightforward: we
just need independent tables for all the S-boxes. As for the linear operations,
they have to be applied independently on the two shares that are explicitly
manipulated by the leaking device, just as in standard Boolean masking.

Algorithm 1 - Table refreshing.

- input: Pk.

1. Pick a1
R←− {0, 1}n;

2. Pick a2
R←− {0, 1}n

3. Pick a3
R←− {0, 1}n;

4. Pre-compute G1(I, J) = I ⊕ J ⊕ a1;
5. Pre-compute R(I) = Pk(I)⊕ a2;
6. Pre-compute G2(I, J) = I ⊕ J ⊕ a3;
7. Pre-compute RC(I, J) = r(I)⊕ pk(I ⊕ J ⊕ a1)⊕ a3;
- output: G1,R,G2,RC.

Algorithm 2 - S-box evaluation on input x.

- input: G1,R,RC.

1. Pick m
R←− {0, 1}n;

2. Compute G1(x,m);
3. Compute R(G1(x,m));
4. Compute RC(G1(x,m),m);
- output: R(G1(x,m)), RC(G1(x,m),m).

4.2 Application to reduced LED

The previous section suggests that the RLUT countermeasure has high memory
requirements, that strongly depend on the S-box size used in the block cipher to
protect. In particular, given a Nr-round cipher with Ns S-boxes per round, the
implementation of the RLUT countermeasure essentially requires storing:

– A table map that corresponds to all the ai shares generated during pre-
computation, with memory cost estimated as (Ns ·Nr) · 2 +Ns n-bit words
(where the factor 2 corresponds to the fact that excepted for the first round,
the share a1 in Algorithm 1 is always provided by the previous round).

– A randomized program that corresponds to the tables R and RC, with mem-
ory cost estimated as Nr ·Ns tables of size 2n × n and 22n × n, respectively.

Note that operations Gi are never explicitly used during the cipher execution, but
for the first round to mask, and last round to unmask after a secure computation
is completed. Following these estimations, and as discussed in [18], it is natural
to consider a cipher with 4-bit S-boxes for this purpose. In the following, we will
consider reduced (16-bit) versions of the LED cipher illustrated in Figure 6.



Fig. 6: Reduced version of the block cipher LED.

While such a cipher is naturally too small for being deployed in actual ap-
plications, we use it to refine our model for RLUT performance estimates. As
will be discussed in the next sections, scaling to larger number of rounds and
block size (e.g. the full 64-bit LED cipher) will be possible in soon available 128-
and 256-kilobyte versions of our FRAM microcontroller. In the figure, the 4-bit
S-boxes of LED are denoted as S, and its linear diffusion layer as MixColumns.

4.3 Implementation in FRAM microcontrollers

We now describe how to implement reduced (with up to 4 rounds) LED ciphers
within the 16 kilobytes of FRAM available in our MSP430FR microcontroller.

The first building block required in a RLUT-masked implementation is a
randomness generator (needed to produce the ai values of Algorithm 1). For
illustration, we used a LFSR with CRC-32 polynomial for this purpose (al-
ternative ways of generating randomness could of be considered, e.g. using a
leakage-resilient PRG if leaking pre-computations are considered [5, 17]).

Next, the part computing the randomized program can be implemented quite
straightforwardly, following the description in Section 4.1. The trickiest bit was
to efficiently arrange 4-bit outputs into memory bytes, without giving any un-
necessary information on the RLUT input values3. Using one byte to store two
consecutive RLUT outputs was rejected, since accessing one or the other value
in the byte would have led to different code behaviors, depending on the LSB bit
of the RLUT’s input. Instead, we stored the outputs coming from two different
RLUTs for the same input value in a single byte. This time, the LSB (resp.
MSB) part of one byte will be accessed when an odd (resp. even) word of the
state needs to be computed, giving no information on the word’s value itself.
Based on this strategy, the RLUTs R and RC can be generated efficiently from
the cipher key, the S-Box and the table map, that are all stored in memory.

3 This has no impact on the security in case of secure pre-computation, but may
increase the information leakage in case of online randomization of the tables.



Eventually, the last piece of code concerns the execution of the block cipher
itself. Again, the fact that the operations are performed on 4-bit words had to
be taken into account while accessing the variables or tables stored in memory.
One round of the reduced algorithm is executed by first reading the R and RC
tables’ outputs, corresponding to the cipher state and mask intermediate values.
Then, the MixColumn layer is executed on each of the shares. It is implemented
using an Xtime table, as suggested in the specifications of LED [8].

4.4 Results and discussion

As described in Section 4.2, an estimation of the memory size required to store
the table map and randomized program of the RLUT countermeasure can be
derived from the number of rounds Nr, the number of S-Boxes per round Ns

and the S-Box bit-size n. This estimation is illustrated by the dashed line of
figure 7, in the case where Ns = 4, n = 4 and Nr varies from 1 to 4. A plain
line representing the actual results we obtained for our implementation is also
plotted. The two curves follow the same trend, with the offset separating them
corresponding to the code size needed to implement the cipher itself (i.e. ex-
cluding the tables for which the memory requirements are growing with Nr - see
the detailed results in Appendix A, Table 2). Interestingly, these results suggest
that for any parameters Nr, Ns and n, the memory requirements needed to im-
plement a block cipher protected with the RLUT countermeasure can be quite
accurately predicted. For example, such an implementation for a full (64-bit)
version of the block cipher LED (corresponding to Nr = 32, Ns = 16 and n = 4)
would roughly require a memory size of 70 kilobytes, and could therefore be
implemented in the soon available 128-kilobyte FRAM microcontrollers.

0

1000

2000

3000

4000

1 2 3 4

Number of rounds

P
ro

g
ra

m
si

ze
[b

y
te

s]

Implementation
Prediction

Fig. 7: Program size of the LED cipher protected with RLUTs.



The question of accurate predictions can also be asked for pre-computation
time: estimates for this metric were similarly provided in [18]. Namely, the time
needed to generate the RLUTs can be approximated with ((Ns.Nr).2 + Ns) +
(Ns.Nr).2n + (Ns.Nr).22n “elementary operations” (where the first term corre-
sponds to randomness generation, and the later ones correspond to the refreshing
of the R and RC tables). Our actual implementation results directly allow trans-
lating these “elementary operations” into a concrete number of clock cycles. The
results in Figure 8 (also reported in Appendix A, Table 3) again confirm a nice
correlation with predictions. Namely, the main difference between both curves
is a factor 40, which presumably corresponds to the number of cycles needed to
perform each elementary operations. Extrapolating these results to the full (64-
bit) version of the LED block cipher suggests pre-computation time complexities
around 140 000 elementary operations, corresponding to 5 600 000 cycles (i.e.
an execution time of 35 milliseconds at 16MHz), which would be acceptable for
some applications (and is likely to be improved with technology scaling).

0

40 000

80 000

120 000

160 000

0

1 000

2 000

3 000

4 000

1 2 3 4

Number of rounds

C
y
cl

e
co

u
n
t

E
lem

en
ta

ry
o
p

era
tio

n
s

Implementation
Prediction

Fig. 8: Pre-computation time of the LED cipher protected with RLUTs.

Eventually, it is worth noticing that time and memory complexities could
be reduced by exploiting some performance vs. security tradeoffs. A first solu-
tion would be an implementation for which only some rounds are masked with
RLUTs, while the others use standard masking schemes. For example, one could
protect only the first and last 4 rounds of (full, 64-bit) LED, i.e. 8 out of 32, re-
sulting in an approximate reduction of the time and memory complexities down
to 25% of their original values. However, this solution may be risky in front of ad-
vanced attacks such as algebraic ones, that can exploit the leakage of the middle
rounds [14]. Another approach to reduce the pre-computation time consists in
refreshing only a fraction of the table map (and randomized program) after each
cipher execution, and to perform this refreshing randomly. Interestingly, such a
tradeoff would also take advantage of the non-volatile capacities of FRAM mem-



ories, since the complete randomized program could be pre-computed offline,
while only a part of it would be modified online. It is flexible since the fraction
of RLUTs modified per cipher executions could be adapted to the application
requirements. As an illustration, modifying 10% of the RLUTs in (full, 64-bit)
LED would reduce the pre-computation time to approximately 560 000 cycles,
which is getting close to the performances of a third-order masked AES (470 000
cycles in [15]). Combining the two appraoches would of course be possible as
well, e.g. by randomizing the first- and last-round tables in priority.

5 Conclusion

Our results put forward that FRAM is a promising technology in the context of
side-channel resistant cryptographic hardware, since it enables the efficient im-
plementation of various countermeasures taking advantage of pre-computations.
The case of RLUTs is particularly relevant to illustrate this observation. Indeed,
they have never been implemented so far, they will soon be applicable to com-
plete block ciphers, and may lead to high security levels for small embedded
devices, independent of hardware assumptions that may be hard to fulfill. Im-
portant scopes for further investigations include the evaluation of the security
levels obtained in the context of partially leaking pre-computations. In particu-
lar, analyzing the online refreshing of partially randomized programs mentioned
in Section 4.4 would be very useful. Besides, the design of block ciphers that are
well suited to implementations with RLUTs (e.g. with light(er) non-linear layers
and strong(er) linear ones) is another interesting research avenue.

Acknowledgements. Stéphanie Kerckhof is a PhD student funded by a FRIA
grant, Belgium. François-Xavier Standaert is a research associate of the Belgian
Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in parts
by the Walloon region WIST program project MIPSs, by the European Commis-
sion through the ERC project 280141 (acronym CRASH) and by the European
ISEC action grant HOME/2010/ISEC/AG/INT-011 B-CCENTRE.

References

1. 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,
October 23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society, 2010.

2. Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan.
Overcoming the Hole in the Bucket: Public-Key Cryptography Resilient to Con-
tinual Memory Leakage. In FOCS [1], pages 501–510.

3. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Michael J. Wiener,
editor, CRYPTO, volume 1666 of LNCS, pages 398–412. Springer, 1999.

4. Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs.
Cryptography against Continuous Memory Attacks. In FOCS [1], pages 511–520.

5. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-Resilient Cryptography. In
FOCS, pages 293–302. IEEE Computer Society, 2008.



6. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-Time Pro-
grams. In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in
Computer Science, pages 39–56. Springer, 2008.

7. Vincent Grosso, François-Xavier Standaert, and Sebastian Faust. Masking vs.
Multiparty Computation: How Large Is the Gap for AES? In Guido Bertoni and
Jean-Sébastien Coron, editors, CHES, volume 8086 of Lecture Notes in Computer
Science, pages 400–416. Springer, 2013.

8. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES, volume
6917 of Lecture Notes in Computer Science, pages 326–341. Springer, 2011.

9. Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES Smart Card
Implementation Resistant to Power Analysis Attacks. In Jianying Zhou, Moti
Yung, and Feng Bao, editors, ACNS, volume 3989 of Lecture Notes in Computer
Science, pages 239–252, 2006.

10. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks -
Revealing the Secrets of Smart Cards. Springer, 2007.

11. Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-Channel Leakage of
Masked CMOS Gates. In Alfred Menezes, editor, CT-RSA, volume 3376 of Lecture
Notes in Computer Science, pages 351–365. Springer, 2005.

12. Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco
Regazzoni. Fresh Re-keying: Security against Side-Channel and Fault At-
tacks for Low-Cost Devices. In Daniel J. Bernstein and Tanja Lange, editors,
AFRICACRYPT, volume 6055 of Lecture Notes in Computer Science, pages 279–
296. Springer, 2010.

13. Bertram Poettering. Rijndael Furious, http://point-at-infinity.org/avraes/.
14. Mathieu Renauld and François-Xavier Standaert. Algebraic Side-Channel Attacks.

In Feng Bao, Moti Yung, Dongdai Lin, and Jiwu Jing, editors, Inscrypt, volume
6151 of Lecture Notes in Computer Science, pages 393–410. Springer, 2009.

15. Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking of
AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume
6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

16. Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-Order Masking and
Shuffling for Software Implementations of Block Ciphers. In Christophe Clavier
and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in Computer Science,
pages 171–188. Springer, 2009.

17. François-Xavier Standaert, Olivier Pereira, and Yu Yu. Leakage-Resilient Symmet-
ric Cryptography under Empirically Verifiable Assumptions. In Ran Canetti and
Juan A. Garay, editors, CRYPTO (1), volume 8042 of Lecture Notes in Computer
Science, pages 335–352. Springer, 2013.

18. François-Xavier Standaert, Christophe Petit, and Nicolas Veyrat-Charvillon.
Masking with Randomized Look Up Tables - Towards Preventing Side-Channel
Attacks of All Orders. In David Naccache, editor, Cryptography and Security, vol-
ume 6805 of Lecture Notes in Computer Science, pages 283–299. Springer, 2012.

19. François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt
Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The World Is
Not Enough: Another Look on Second-Order DPA. In Masayuki Abe, editor,
ASIACRYPT, volume 6477 of LNCS, pages 112–129. Springer, 2010.

20. Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against Side-Channel Attacks: A Comprehensive Study
with Cautionary Note. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT,
volume 7658 of Lecture Notes in Computer Science, pages 740–757. Springer, 2012.



A RLUT Implementation Results

Code Size Data Size Total

1 Round 1180 562 1742
2 Rounds 1180 1112 2292
3 Rounds 1180 1662 2842
4 Rounds 1180 2212 3392

Table 2: Program size of the LED cipher protected with RLUTs (in bytes).

Randomness generation RLUTs Generation LED Execution Total

1 Round 1422 41 910 404 43 736
2 Rounds 2208 83 807 642 86 657
3 Rounds 2991 125 716 883 129 590
4 Rounds 3770 167 617 1118 172 505

Table 3: Cycle counts of the LED cipher protected with RLUTs.


