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Abstract. Most implementations of public key cryptography employ
exponentiation algorithms. Side-channel attacks on secret exponents are
typically bound to the leakage of single executions due to cryptographic
protocols or side-channel countermeasures such as blinding. We propose
for the first time, to use a well-established class of algorithms, i.e. un-
supervised cluster classification algorithms such as the k-means algo-
rithm to attack cryptographic exponentiations and recover secret ex-
ponents without any prior profiling, manual tuning or leakage models.
Not requiring profiling is of significant advantage to attackers, as are
well-established algorithms. The proposed non-profiled single-execution
attack is able to exploit any available single-execution leakage and pro-
vides a straight-forward option to combine simultaneous measurements
to increase the available leakage. We present empirical results from at-
tacking an FPGA-based elliptic curve scalar multiplication using the k-
means clustering algorithm and successfully exploit location-based leak-
age from high-resolution electromagnetic field measurements to achieve
a low remaining brute-force complexity of the secret exponent. A simu-
lated multi-channel measurement even enables an error-free recovery of
the exponent.

Keywords: Exponentiation, side-channel attack, non-profiled, single-
execution, unsupervised clustering, simultaneous measurements, EM.

1 Introduction

The main computations in public key cryptosystems are modular exponentia-
tions with secret exponents or elliptic curve scalar multiplications with secret
scalars. In both cases, the same exponentiation algorithms are employed to se-
rially process exponents. In DSA or ECDSA, the exponents are different for
? This research has been conducted while working for Infineon Technologies AG,
Munich, Germany



2 Non-Profiled Single-Execution Attacks on Exponentiations

every execution, e.g., chosen randomly as ephemeral secrets. RSA employs the
same exponent multiple times, but exponent blinding [15] is often used as a
countermeasure against side-channel analysis to use different exponents in every
execution. Hence, side-channel attackers may only exploit single executions to re-
cover a secret exponent. To prevent conventional SPA and timing attacks [15] the
operation sequences during the serial processing of the exponents are rendered
as homogeneous as possible. Algorithms like the square-and-multiply(-always),
double-and-add(-always) or the Montgomery ladder algorithm are examples with
constant operation sequences. However, a certain amount of side-channel leakage
during single executions, i.e., single-execution leakage, about serially and inde-
pendently processed bits or digits during the exponentiation cannot be prevented
in many cases [5, 21, 14, 24]. This may for instance be location-based leakage [12],
address bit leakage [14], or operation-dependent leakage, e.g., when square and
multiply operations can be distinguished [5].

We propose to specifically take advantage of well-established cluster classifi-
cation algorithms [9] in general and the k-means algorithm for example to exploit
any of such single-execution leakage and to recover secret exponents without any
prior profiling, manual tuning or heuristic leakage models. It is of significant ad-
vantage for an attacker if no profiling is required because profiling can easily be
prevented by using e.g., exponent blinding in the implementation or by execut-
ing the accessible exponentiation with public inputs on a different cryptographic
engine as the private operation. Segments of the exponentiation which corre-
spond to different exponent bits or digits are classified to find similar segments
in an unsupervised way and by using algorithms from the well-researched field of
pattern classification. This is contrary to previous attempts which use individual
algorithms. An unsupervised classification equals the recovery of a secret expo-
nent. Unsupervised clustering is generally useful in side-channel analysis when
profiling information is not available and an exhaustive partitioning is compu-
tationally infeasible. The success of a correct classification of the exponent bits
depends on the amount of available leakage signal in a certain measurement.
Clustering algorithms further allow to determine posterior probabilities for clas-
sified bits. Hence, if only a part of the secret exponent is classified correctly, an
attacker may brute-force bits with low posterior probabilities first. This enables
a straight-forward approach to cope with erroneous bits and allows to significantly
reduce the secret’s entropy, thus, brute-force complexity, even if a complete re-
covery is impossible. The only way for an attacker to gather more leakage is
to perform simultaneous measurements in multiple channels because attackers
are not able to collect measurements from repeated executions since exponents
change in every execution. Clustering algorithms allow for a straight-forward
approach to combine such simultaneous side-channel measurements.

In an empirical study, we demonstrate the proposed attack and exploit the
location-based single-execution leakage [12] of an FPGA-based implementation
of an elliptic curve scalar multiplication using the k-means clustering algorithm.
We employ high-resolution measurements of the electromagnetic field and se-
lect measurement positions without prior profiling. The main result from our
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practical experiments is that the proposed method successfully reduces the re-
maining brute-force complexity of the secret scalar to a well-acceptable level in
two out of nine cases. Additionally, we show how a combination of simultaneous
measurements leads to a complete recovery of the scalar in a simulated setting.

Related work is discussed in Sect. 2. We present the non-profiled cluster-
ing attack on exponentiation algorithms in Sect. 3. In Sect. 4, we describe our
practical evaluation of the attack and discuss countermeasures. Conclusions are
provided in Sect. 5.

2 Related Work

In the following, we present related work in three aspects of this contribution:
other attacks on exponentiation algorithms, previous applications of cluster anal-
ysis, and combination of measurements.

On Side-Channel Attacks on Exponentiations Schindler and Itoh [21] present an
attack against multiple blinded executions of exponentiation algorithms assum-
ing that a single execution does not provide enough leakage. Our contribution
presents a complement rather than an alternative to Schindler and Itoh’s attack
since we propose cluster classification algorithms as a single execution attack
and means to improve the exploitation of any single-execution leakage. If our
attack does not lead to correct exponents, Schindler and Itoh’s attack can be
used on top of it. Walter [24] describes a single-execution side-channel attack
on m-ary (m > 2) sliding window exponentiation algorithms. He recognizes pre-
computed multiplier values in segments of the digit-wise exponentiation and uses
his own algorithm to scan through the segments in one single pass and partition
them into buckets according to their pair-wise similarity. While the main idea
of our contribution is similar to the one described by Walter, we propose to em-
ploy unsupervised cluster classification algorithms which have been thoroughly
researched in other statistical applications instead of using an individual algo-
rithm which has not been investigated by the respective scientific community. In
this way, our approach can be extended to a wide range of exponentiation algo-
rithms and exploit any available kind of single-execution leakage of independent
exponent bits or digits.

There are many published side-channel attacks on exponentiations based on
the correlation coefficient. Messerges et al. [19] first mention cross-correlation of
measurement segments to compare them and then perform a classification based
on manually tuned thresholds. Witteman et al. [25] present an SPA attack on
the square-and-multiply-always algorithm by cross-correlating measurements of
consecutive operations sharing the same input values. From our view, using a
correlation coefficient as a measure of similarity only incorporates linear rela-
tions while disregarding absolute values, thus, contained information. Hence, it
is only meaningful in cases when absolute values are of different scales such
as when comparing heuristic models of power consumption to actual measure-
ments or when comparing measurements from different setups. Amiel et al. [2]
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and Clavier et al. [7] correlate heuristic leakage models from fixed multiplier
values with the measurement to recover the exponent. Perin et al. [20] exploit
bit-dependent differences in exponentiation algorithms using measurements of
electromagnetic fields. However, they require averaging of multiple measure-
ments in their practical results, which is infeasible in realistic circumstances.
Algorithmically they simply subtract exponentiation segments from each other
and use manually tuned thresholds to recover information. Hence, and contrary
to us, all those approaches require a manual tuning of thresholds and, in part,
heuristic leakage models as well as ad-hoc algorithms. Our approach using well-
established algorithms provides an algorithmic advantage compared to them.
Furthermore, we use the Euclidean distance instead of the correlation coeffi-
cient as a similarity metric to incorporate the maximum amount of contained
information when comparing segments of the same measurement.

On Previous Applications of Cluster Analysis in SCA There are previous contri-
butions which mention cluster analysis in the context of side-channel analysis.
Batina et al. [3] propose Differential Cluster Analysis (DCA) as an extension
to DPA. Instead of a difference-of-means test as in classic DPA, a cluster crite-
rion is used as statistical distinguisher. However, they do not use unsupervised
cluster classification algorithms. In [4, 18], this work is extended by consider-
ing PCA. Lemke-Rust and Paar [16] propose a profiled multi-execution attack
against masked implementations of symmetric algorithms using the expectation-
maximization clustering algorithm and a training set for the estimation of the
clusters. In a profiled setting, they estimate mixture densities of clusters for
known key values and unknown mask values using multiple executions. Contrar-
ily, our approach is a non-profiled attack.

On the Combination of Measurements A combination of simultaneous measure-
ments can generally improve the success of side-channel attacks. Agrawal et
al. [1] combine simultaneous measurements of the power consumption and elec-
tromagnetic field for profiled template attacks. Standaert and Archambeau [23]
extend this and apply Principal Component Analysis (PCA) and Fisher’s Lin-
ear Discriminant Analysis (LDA) to reduce the data dimensionality for template
attacks. They also present a simple approach to combine simultaneous measure-
ments for classic Differential Power Analysis (DPA) by treating measurements
from different channels jointly. Souissi et al. [22] and Elaabid et al. [10] extend
Correlation-based differential Power Analysis (CPA) [6] to combine simultane-
ous measurements by using products [10] or sums [22] of correlation coefficients.
Contrary to previous contributions, our approach presents a way of combining
measurements for a non-profiled single-execution attack.

3 Non-Profiled Clustering to Attack Exponentiations

When attacking exponentiation algorithms used in public key cryptography, only
a single execution is available to an attacker to recover a secret exponent because
of cryptographic protocols or protection against side-channel analysis.
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In the following subsections we first describe the term single-execution leak-
age and how measurement traces are segmented into samples for classification.
As a main part, we describe how to apply unsupervised clustering algorithms for
a non-profiled and non manually-tuned attack. For the case that the attack is
not entirely successful due to insufficient single-execution leakage, we describe an
approach to cope with classification errors to achieve low remaining brute-force
complexities nonetheless. Finally, we describe how to use multiple simultaneous
measurements to gather more leakage.

3.1 Single-Execution Side-Channel Leakage of Exponentiations
The common property of all popular exponentiation algorithms, e.g., binary,
m-ary, or sliding window exponentiations is that the computation is segmented
and performed in a loop. In every segment, the same operations are repeated to
process independent bits or digits of the exponent. (If the operations would be
different and depending on exponent bits, the implementation would be prone
to conventional SPA and timing attacks [15].) We use the case of binary ex-
ponentiations which process the exponent bit-wise for our explanations. The
square-and-multiply-always algorithm for instance repeatedly either performs a
square-and-multiply, or a square-and-dummy-multiply operation, depending on
each processed bit. Such repeated operations share similarities for equal bits.
Depending on the implementation and included countermeasures, different side-
channels can be exploited to detect such similarities. We refer to the side-channel
information about different bits which is leaked in single executions of exponen-
tiations as single-execution side-channel leakage. Our approach is able to exploit
any kind of such single-execution leakage.

binary exponentiation

loop iterations

samples

Fig. 1. Segmenting a side-channel measurement of an exponentiation into samples

Figure 1 abstractly depicts a side-channel measurement of a timing-safe bi-
nary exponentiation algorithm in the upper part. The observed computation
consists of a loop with multiple iterations of constant timing which correspond to
single exponent bits. The algorithm could e.g. be a square-and-multiply-always,
double-and-add-always, or Montgomery ladder algorithm. Such a side-channel
measurement trace vector t = (t1, ... , tl) of an exponentiation contains l measure-
ment values tx and covers the entire execution. Binary algorithms process n bits
during this time in total. To exploit the single-execution leakage of n indepen-
dent bits, the trace is cut into n multivariate samples ti = (t(1+(i−1) l

n ), ... , t(i l
n )),
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1 ≤ i ≤ n of equal length l
n where each sample then corresponds to one bit. Fig-

ure 1 also depicts an abstract example for how a side-channel measurement is
cut into samples. The segmentation borders can e.g. be derived from visual in-
spection or comparison of shifted trace parts.

3.2 Clustering of Samples Reveals the Secret without Profiling

The multivariate samples ti contain the leakage of independent, secret expo-
nent bits. Hence, the samples belong to one of two classes, i.e., ωA and ωB .
(When attacking m-ary, or sliding window exponentiation algorithms, m classes
are expected.) All side-channel measurements are affected by normally dis-
tributed measurement- and switching noise. Therefore, samples within classes
ωj , j ∈ {A,B} are normally distributed around means µj . The distance be-
tween these means µj is caused by the exploited single-execution leakage. Hence,
the distribution of samples ti in two classes ωA and ωB can be described as
p(ti|ωA) ∼ N (µA,ΣA) and p(ti|ωB) ∼ N (µB ,ΣB).

The correct partition of samples ti into classes ωA and ωB is unknown to the
attacker. The number of possible partitions equals 2n for binary exponentiations
with n bit exponents. Testing all possible partitions equals brute-forcing a secret
and is computationally infeasible for realistic exponent sizes. Template attacks
find these classifications through matching against templates which are found in
a profiling phase. Other related work use cross-correlation and manually tuned
thresholds as well as individual and ad-hoc algorithms.

However, we found that well-researched unsupervised cluster classification al-
gorithms such as k-means clustering [9] can be used to find partitions effectively
and without any manual methods or prior profiling. Hence, we propose to use
such algorithms for single-execution side-channel attacks on exponentiation al-
gorithms. Finding a correct partition, or classification, equals the recovery of the
secret exponent. If the correct partition is found, there are only two possibilities
to assign the bit values 0 and 1 to two classes ωA and ωB , hence, to recover the
secret exponent.

The choice of a clustering algorithm depends on the shape of the clusters,
hence the distribution of samples within clusters. We decided to start with a
simple model of cluster distributions and assume that all variables (dimensions)
within the multivariate samples ti are independent and exhibit equal variances
σ2 within the two classes. Hence, the distribution of both classes ωA and ωB can
be described as p(ti|ωj) ∼ N (µj , σ

2I), j ∈ {A,B}. The optimal classification
algorithm under these assumptions is the k-means clustering algorithm which
is depicted in Alg. 1. It uses the Euclidean distance as a similarity metric and
estimates k cluster means µj , j ∈ {1, k}. In the case of binary algorithms, k
equals 2 and two classes ωA and ωB are expected.

Initially, k random samples ti are randomly selected as means and the re-
maining samples are classified according to shortest Euclidean distance. Then,
in iterations, new means are computed within each class, and the classification
according to shortest Euclidean distance is repeated until the classification is sta-
ble in subsequent iterations. The k-means algorithm is usually executed multiple
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Algorithm 1 Unsupervised k-means clustering algorithm [9]
input: samples ti, 1 ≤ i ≤ n, number of clusters k
output: cluster means µj , 1 ≤ j ≤ k and classification ci ∈ [1..k], 1 ≤ i ≤ n

1: initialize by picking k random samples ti as start values for µj , 1 ≤ j ≤ k
2: repeat
3: assign samples ti to classes ci ∈ [1..k] from shortest distance to µj , 1 ≤ j ≤ k
4: compute new µ′

j as mean of all samples ti with ci = j
5: until µ′

j = µj ∀ j, assign µj new values µ′
j and repeat

times and the best result in terms of a sum-of-squared-error criterion is finally
selected in order to prevent the algorithm from getting stuck in local maxima.

Clustering algorithms essentially estimate cluster parameters to perform clas-
sifications. This estimation of clusters could be improved by using more samples
from multiple executions in a first step, even though the secret would then be
different in every execution. The actual attack would then be performed in a
second step and certainly only target a single execution.

Decorrelation and Reduction of Dimensions If the samples derived from mea-
surements do not comply with the model which is required for the application
of k-means (described above), the results will be worse than theoretically pos-
sible. The k-means algorithm assumes statistical independence of dimensions
(variables) in the samples, thus, uncorrelated noise influences. However, subse-
quent measurement values of the power consumption possibly contain the same
switching noise influence. One way to handle this is to employ the expectation-
maximization clustering algorithm which provides more degrees of freedom in
such cases (because it also models the covariance between variables). However,
it requires a significant overhead in computation. Alternatively, if necessary, this
can be coped with by employing Principal Component Analysis (PCA) [9]. PCA
performs a projection into a lower dimensional, orthogonal space by maximizing
the variance in the samples. Hence, the remaining dimensions are uncorrelated.
(As a drawback, this is performed without regard of cluster distributions or
cluster discriminants which could possibly lead to inferior results.) PCA can
certainly also be used to reduce the amount of dimensions in the samples ti for
computational reasons.

3.3 Brute-Force Complexity to Handle Classification Errors

If a recovered exponent cannot be verified as being entirely correct, at least one
sample (bit) is misclassified by the algorithm. We propose a way to cope with
such situations. Clustering algorithms allow to derive posterior class-membership
probabilities [9] for all samples ti along with their classification. For instance
when employing the k-means clustering algorithm, samples which are classified
into class ωA and are close to the separating plane between ωA and ωB have a
low posterior probability of belonging to class ωA. An attacker may approach
misclassifications by brute-forcing samples with low posterior probabilities first.
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A straight-forward approach is to iteratively consider an increasing range of sam-
ples i with the lowest posterior probabilities and brute-force their classification
until all erroneous samples are included in this range, thus, a correct classifi-
cation is achieved. Given that m equals the final number, which the attacker
certainly does not know from the beginning, he would proceed iteratively and
increase the number of included bits i starting from 1 until m is reached. The
required brute-force complexity to handle classification errors can, thus, be given
as an upper bound by using the sum formula of a geometric series. Including the
mandatory step of brute-forcing the classes-to-bit-values assignment (A and B
to 0 and 1), this required brute-force complexity equals 2×

m∑
i=1

2i = 2m+1+1 − 2

for m > 0 and can be defined as 2 for m = 0 (classification entirely correct; one
out of two trial for correct class-to-bit-value assignment). This means that even
if the exponent is not recovered entirely, the entropy can be significantly reduced
which is a significant advantage over previous methods which do not provide such
a mechanism to cope with errors during an attack.

3.4 Combining Side-Channel Measurements

The success of single-execution attacks on exponentiation algorithms generally
suffers from insufficient leakage [21, 5]. Countermeasures introduce superficial
noise to decrease the signal-to-noise ratio of the leakage or aim at reducing
the leakage signal directly. Averaging repeated measurements with equal input
values is a simple example for an approach to decrease such noise. But this
is not feasible if the secret changes in every execution which is the case for
most cryptographic exponentiations. Hence, simultaneous measurements are the
only way for an attacker to increase the gathered side-channel leakage. Cluster-
ing algorithms allow to combine simultaneous side-channel measurements in a
straight-forward way. This is achieved by generating multivariate samples using
values from all measurements. As an example, samples t1

i from measurement 1
are combined with samples t2

i from measurement 2 leading to combined samples
tcombined

i = (t1
i , t2

i ). This improves the classification, if the new measurements
contain additional leakage information. Hence, we propose to improve clustering-
based single-execution attacks through combining the contained information from
multiple, simultaneous side-channel measurements.

4 Practical Evaluation

In this section, we practically demonstrate our proposed attack against an
FPGA-based ECC implementation. As a single-execution side-channel leakage,
we exploit location-based leakage [12] revealed by high-resolution measurements
of the electromagnetic field [13]. Following the principle that our attack is non-
profiled, we do not use any prior knowledge to find measurement positions with
high leakage.
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4.1 Design-Under-Test and Measurement Setup

Our target is an implementation of an elliptic curve scalar multiplication con-
figured into a Xilinx Spartan-3 (XC3S200) FPGA. It gets affine x- and y-
coordinates of a base point P and a scalar d as input and returns affine x-
and y-coordinates of the resulting point d · P . The result is computed using the
Montgomery ladder algorithm presented by López and Dahab [17] which is a
binary exponentiation algorithm processing a 163 bit scalar bitwise in a uniform
operation sequence. This prevents timing-based single-execution leakage. The
projective coordinates of the input point are randomized [8] as a countermeasure
against differential power analysis. However, the design exhibits location-based
information leakage [12] because it uses working registers depending on the value
of the processed scalar bit and no protection mechanism against this is included.
For these reasons, the design is eligible for our attack and we exploit this single-
execution leakage using high-resolution electromagnetic field measurements.

Fig. 2. FPGA die area as dashed rectangle with array of marked measurement positions

Backside access to integrated circuit dies generally requires less practical ef-
fort in case of plastic or smartcard packages. The plastic package on the backside
of the FPGA was removed mechanically to enable measurements close to the die
surface. We use an inductive near-field probe with a 100 µm resolution, built-in
30dB amplifier, and external 30dB amplifier (both with a noise figure of 4.5 dB).
The detected location-based leakage depends on the measurement position on
the surface of the die [12]. Since our attack is non-profiled, we are unable to find
a position with high leakage through prior profiling. Instead, we choose mea-
surement positions by geometrical means. Fig. 2 shows those 9 positions marked
with circles and annotated with numbers. They are organized in an 3 by 3 array
with 1.5mm distance in x- and y-direction. These geometries seem feasible for
an actual array of electromagnetic probes [22]. The dashed rectangle depicts the
surface of the FPGA die which measures ≈ 5000 ∗ 4000 µm. We performed the
attack on those measurements.
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Furthermore, we demonstrate a combination of simultaneous measurements
to increase the leakage in a simulated setting. Since we did not have an array
probe or multiple probes at hand, we simulated this by moving one probe to the
marked positions and repeated the measurement with exactly equal processed
values. Hence, we prevent the device from changing the exponent and random
numbers during repeated executions. While this simplification is not exactly the
same as simultaneously using multiple probes, we are convinced that the results
are still conclusive.

All measurements were recorded at a sampling rate of 5GS/s and compressed
by using the sum of squared values in every clock cycle (V2s) to reduce the
amount of data and computation complexity during clustering. Through syn-
chronization of the oscilloscope and the function generator, we prevent frequency
jitter and drift in the measurements.

4.2 Clustering Individual Measurements

We performed our clustering-based attack on individual measurements. Hence,
we segmented every measurement into multivariate samples ti. Each sample
contains 551 compressed values of 551 clock cycles during which one exponent
bit is processed. Figure 3 depicts a cut-out of four consecutive samples (14 to
17) from the measurement at position 3 for illustrative purposes. The borders
of the samples are depicted as vertical dashed lines after every 551 cycles. The
exponent bit values which are processed in the segments are annotated, however,
the corresponding single-execution leakage is not clearly visible.

Fig. 3. Four samples (14 to 17) from the compressed measurement at position 3

We attacked the individual measurements by employing the unsupervised
k-means clustering algorithm Alg. 1 to classify the samples in two clusters as
described in Sect. 3.2. The runtime on a regular PC was neglegible and in the
range of seconds. We assess the quality of the result by computing the remain-
ing brute-force complexity required to recover the entirely correct scalar after
clustering as described in Sect. 3.3. Figure 4 depicts the resulting brute-force
complexity for every individual measurement position according to Fig. 2 and
Tab. 1 displays them in tabular form (columns marked with ’1’ to ’9’).
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Fig. 4. Remaining brute-force complexity after clustering individual measurements

measurement positions 1 2 3 4 5 6 7 8 9 all
brute-force complexity [bits] 165 37 70 165 165 60 51 22 165 0

Table 1. Brute-force complexity after clustering single and combined measurements

As a main result of our practical study, we are able to report that in two out of
nine cases, for the measurements at position 8 and 2, the remaining brute-force
complexity (22 and 37 bits) is clearly within a practical reach. An attacker could,
thus, repeat a measurement at different positions, perform the attack including
the incremental brute-force and eventually be successful with a high probability.
This clearly demonstrates the capabilities of unsupervised cluster classification
as a non-profiled single-execution attack on exponentiation algorithms to exploit
single-execution leakage.

Positions 1, 4, 5 and 9 lead to a brute-force complexity of 165 bits which is the
maximum value (163 + 1 + 1 bits) indicating that the clustering algorithm led to
largely incorrect results. Possible reasons for this are insufficient signal-to-noise
ratios of the exploited leakage, outlier samples, or that the k-means algorithm
is insufficient since the assumed model of cluster distributions does not fit. (An
influence of one bit of some internal ALU operation for the separation of two
clusters is impossible since each sample contains many ALU operations with
different data.)

4.3 Clustering Combined Measurements

The results from clustering individual measurements lead to remaining brute-
force complexities greater than zero and in seven out of nine cases beyond limits
for practical brute-force. As a second step, we demonstrate how simultaneous
side-channel measurements can be combined to reduce the remaining brute-
force complexity, hence, improve the attack. We combined the measurements
as described in Sect. 3.4 and repeated the k-means clustering. As an important
result we report, that the classification then leads to a remaining brute-force
complexity of zero, denoted as ’all’ in Tab. 1. This clearly demonstrates the
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advantage of combining measurements for attacking exponentiation algorithms
using unsupervised clustering algorithms.

(a) Result of clustering measurement position 3

(b) Result of clustering 9 combined measurements

Fig. 5. Visual representation of clustering results to show gain of combination

Figure 5(a) and Fig. 5(b) demonstrate the advantage of combining measure-
ments in an more illustrative way. Figure 5(a) visually represents the result
after clustering the single measurement at position number 1. The clustering
algorithm output two cluster means µA and µB and samples which are classified
according to a separation plane in the middle between those means (equals clas-
sification according to shortest Euclidean distance). For the illustration of this
clustering result, we projected all multivariate samples ti (multi-dimensional)
onto a line (one-dimensional) which extends through both cluster means. As
such, the resulting single values per sample are linear combinations of all vec-
tor dimensions according to the weighting factors determined by the clustering
result. After this projection, the two cluster distributions become clearly ob-
servable. For the illustration, we use the correct scalar to mark the samples
according to their proper class membership. Additionally, we estimate the two
assumed Gaussian distributions and depict two curves, denoted as class A/B
density estimation. It is obvious that the two distributions overlap in Fig. 5(a)
which means that there have been misclassifications. Many samples are across
the wrong side of the half distance between the two distributions which corre-
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sponds to the separation plane. This leads to the high brute-force complexity
reported in Tab. 1.

Figure 5(b) depicts a similar linear projection of the result after clustering
of 9 combined measurements. It can be observed clearly, that the separation of
the two classes is significantly improved by the combination of measurements
which also complies with the brute-force complexity of 0 reported in Tab. 1.

4.4 Countermeasures

Generally, all methods which reduce the signal-to-noise ratio of arbitrary single-
execution leakage, either by reducing the single-execution leakage signal, or in-
creasing the noise level, make our attack more difficult since the attacker is
limited in the number of measurements he can record simultaneously. There is
no dedicated other countermeasure except for such general ones.

Location-based single-execution leakage as it is exploited in this practical
attack can specifically be prevented by randomizing variable locations [12], by
balancing registers and their signal paths, or by locating them in an interleaved
way that they cannot be distinguished [11].

5 Conclusion

We demonstrate that unsupervised clustering algorithms are powerful for attack-
ing a wide range of exponentiation algorithms in single-execution settings and
without any prior profiling or manually tuned thresholds, which is of significant
advantage for attackers. Instead of individual ad-hoc algorithms we propose to
use well-research cluster classification algorithms. Any available single-execution
side-channel leakage can be exploited.

In a practical evaluation we successfully recover the secret scalar from an
FPGA-based ECC implementation. Individual measurements of the electromag-
netic field partly lead to sufficiently low remaining brute-force complexities. By
performing the attack including the incremental brute-force at several positions,
the attacker might get successful with a realistic effort. Additionally, we pro-
vide evidence for the advantage of combining simultaneous measurements. This
means that instead of finding specifically good measurement positions, an at-
tacker might simply combine leakage information from multiple simultaneous
measurements.

Acknowledgements. This work was partly funded by the German Federal
Ministry of Education and Research in the project SIBASE through grant num-
ber 01IS13020.
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