
Optimization of Power Analysis Using Neural
Network

Zdenek Martinasek, Jan Hajny, and Lukas Malina

Brno University of Technology, Department of Telecommunications
Technicka 12, 612 00 Brno, Czech Republic

Abstract. In power analysis, many different statistical methods and
power consumption models are used to obtain the value of a secret key
from the power traces measured. An interesting method of power analy-
sis based on multi-layer perceptron was presented in [1] claiming a 90%
success rate. The theoretical and empirical success rates were determined
to be 80% and 85%, respectively, which is not sufficient enough. In the
paper, we propose and realize an optimization of this power analysis
method which improves the success rate to almost 100%. The optimiza-
tion is based on preprocessing the measured power traces using the cal-
culation of the average trace and the subsequent calculation of the dif-
ference power traces. In this way, the prepared power patterns were used
for neural network training and of course during the attack. This opti-
mization is computationally undemanding compared to other methods
of preprocessing usually applied in power analysis, and has a great im-
pact on classification results. In the paper, we compare the results of the
optimized method with the original implementation. We highlight posi-
tive and also some negative impacts of the optimization on classification
results.

Keywords: Power analysis, neural network, optimization, preprocess-
ing

1 Introduction

Power analysis (PA) measures and analyzes the power consumption of crypto-
graphic devices depending on their activity. It was introduced by Kocher in [2].
The goal of PA is to determine the sensitive information of cryptographic devices
from the measured power consumption and to apply the obtained information in
order to abuse the cryptographic device. There are two basic methods of power
analysis: simple PA and differential PA. The attacker tries to determine the se-
cret key directly from the traces measured in the simple power analysis (SPA).
In the most extreme case, this means that the attacker attempts to reveal the
key based on one single power trace. The goal of the differential power analysis
(DPA) attacks is to reveal the secret key of the cryptographic module by using
a large number of power traces that have been recorded while the device was
encrypting or decrypting various input data. Power analysis is widely discussed

2 Martinasek, Z., Hajny J., Malina, L.

and belongs to the most popular types of side channel analysis methods because
the attacker does not need any expensive special equipment. A detailed descrip-
tion of power analysis including side-channel sources, testbed, statistical tests
and countermeasures is summarized in the book [3].

1.1 Related Work

Simple power analysis attacks were described by Kocher in [2]. A typical ex-
ample of SPA is the attack on the implementation of the RSA (Rivest Shamir
Adleman) asymmetric cryptographic algorithm, where the difference in power
consumption between the operations of multiplication and squaring can be ob-
served [4]. Template based attacks are another type of SPA attack, which were
introduced in [5]. Practical aspects of template attacks have been discussed in
[6, 7].

The concept of the DPA attack was first described also in [2] and the basic
principle was introduced on a DES algorithm using the statistical method based
on the Difference of Means. Subsequently, applicable statistical tests were dis-
cussed in [8]. An important question of the impact of preprocessing the measured
data on the effectiveness of DPA was presented in [9, 10]. The application of the
correlation coefficient as a statistical method in DPA was described in [11] and
nowadays, this method is one of the most widely used. A detailed description of
the general schema on which all power analyses are based and the best known
statistical tests including the basic power simulation models are given in [3, 12].

One of the first examples of digital signal processing applied to side channel
analysis can be found in [13]. Digital filtering is used to facilitate attacks based
on side channel analysis for devices such as Xilinx Field Programmable Gate
Arrays (FPGAs) [14], Radio Frequency Identification (RFID) devices [15–17]
and Cortex-M3 SoC [18].

Neural networks (NN) are used mostly in the cryptography branch to realize
key distribution [19], hash functions [20], random number generators [21], in
public-key cryptography [22], and in the exchange protocols [23] (similar to the
Diffie-Hellman protocol). The publications [24, 25] dealing with the use of NN
in the side channel cryptanalysis are mostly focused on acoustic side channels,
where NN are used for the classification of captured records of buttons pressed
on a keyboard.

In the field of power analysis, the possibility of using neural networks was first
published in [26]. Naturally, this work was followed by other authors, e.g. [27–
29], who dealt with the classification of individual power prints. These works are
mostly oriented towards reverse engineering based on power print classification.
The usage of neural networks for the classification of a secret key value has been
sparsely published and tested yet. Works [30–33] dealing with this issue are based
on machine learning algorithm such as support vector machines (SVM).

An interesting method based on typical multi-layer perceptron (MLP) was
demonstrated in [1]. In this work, a neural network was used for the classification
of the AES secret key. This power analysis method uses a typical two-layer
perceptron (three-layer neural network if we take into consideration the input

Optimization of Power Analysis Using Neural Network 3

layer) to determine the secret key value only from one power trace measured.
First classification results were really promising and this method achieved a
successful classification of 90% for the first byte of the secret key. The method
was thoroughly tested using 2560 power traces and an empirical success rate of
around 85% was determined. The theoretical success rate determined from the
results was only about 80%. Other negative characteristics were revealed during
the subsequent testing, e.g. the distribution of the maximum probability values
or the low probability value of selected key estimation.

1.2 Our Contribution

Our contribution lies in the optimization of the power analysis method described
in [1]. We minimize the above-mentioned negative characteristics of the method
implementation to increase the success rate of classification. The optimization is
based on preprocessing the power traces measured, using the calculation of the
average trace and the subsequent calculation of the difference power traces. Pre-
processed power patterns are used for the neural network training and, naturally,
during the attack phase, in the same way as described in [1]. This optimization
is computationally undemanding compared to other methods of preprocessing
usually applied in power analysis (e.g. filtering [34]) and has a great impact
on the classification results. In the paper, we compare the results of the opti-
mized method with the original implementation. We highlight the positive and
also some small negative impacts of the optimization on the classification re-
sults. Both methods were verified using 2, 560 power traces corresponding to all
the values of the secret key to analyze the repeatability and feasibility of the
method. In the original paper, the cross-validation was not used to verify the
neural network, we decided to compare the original method implementation with
the optimized method, using the typical 10-fold cross-validation. In data mining
and machine learning, the 10-fold cross-validation is the most common way to
verify the model. Our contribution can be summarized in the following main
points:

– optimization proposal,
– implementation of optimization,
– comparison of results,
– cross-validation of both implementations.

2 Method and Testbed Description

The following text summarizes the most important facts about the original im-
plementation of the power analysis method and the experimental setup. The
fundamental goal of the method is to obtain from the power trace measured the
secret key value, which is stored in the cryptographic module. In the following
text, we denote the secret key stored in the attacked cryptographic module as
Ksec, and the estimated value of secret key, which was determined using a neural

4 Martinasek, Z., Hajny J., Malina, L.

network, as Kest. Naturally, if the method works correctly, the values Kest and
Ksec are equal at the end of the classification process. Assume that the secret
key can be expressed in bytes as Ksec = {k1, k2, . . . , kN} for 0 ≤ ki ≤ 255, where
N represents the secret key length and i each step of the method. The method
assumes sequential classification as most DPA attacks do, which means that the
classification is realized byte by byte. This power analysis determines the first
byte k1 of the secret key in the first step and the second byte k2 in the second
step, and so on. The difference between individual steps is in the division of the
power traces measured into parts corresponding to the time intervals in which
the cryptographic device works with the respective bytes of the secret key. The
method is divided into three phases:

– The first phase is the preparation of power consumption patterns, where
the attacker has to prepare the training set to train the neural network. The
attacker must know the type of the cryptographic module on which he wants
to realize the attack.

– The second phase is the preparation and training of the neural network using
the power patterns measured in the first phase.

– The third phase is the attack. The attacker measures the power consumption
of the device under attack and inserts the measured power trace to the input
of the trained neural network. The neural network assigns the probability
vector to the power consumption that contains probabilities for all key esti-
mates. The estimate key with the highest probability should be equal to the
secret key stored in the device under attack.

It is clear that it is not suitable to measure and classify the power trace cor-
responding to the whole cryptographic algorithm but it is better to locate some
important operations where the cryptographic module works with intermediate
result and the secret key. The AddRoundKey and SubBytes operations represent
a suitable place in the power trace of the AES algorithm.

A complete AES algorithm with a key length of 128 bits was implemented
into the cryptographic module and the synchronization was performed only for
the AddRoudnKey and SubBytes operations in the initialization phase of the
algorithm. The program allowed incrementing and decrementing the first byte
of the secret key (k1) and indicated this operation by sending the respective
value via a serial port to a computer. In [1] and in our experiment, the mea-
surements were focused on the first byte of the secret key but we claim that
this power analysis method is able to classify the whole AES secret key from
only one measured power trace. Therefore, the term secret key denotes the first
byte of the secret key in the following text. The synchronization signal and the
communication with the computer did not affect the power consumption of the
cryptographic module. The cryptographic module was represented by the PIC
8-bit microcontroller, and for the power consumption measurement we used the
CT-6 current probe and the Tektronix DPO-4032 digital oscilloscope. We used
standard operating conditions with 5 V power supply.

A well known fact is that noise always poses the problem during the power
consumption measurement. We performed the experimental measurements of a

Optimization of Power Analysis Using Neural Network 5

Fig. 1: Original power patterns. Fig. 2: Preprocessed power patterns.

Fig. 3: Detail of original patterns. Fig. 4: Detail of preprocessed patterns.

test bed made according to the information provided in [3] and we established
that the noise level was distributed according to the normal distribution with the
parameters µ = 0mA and σ = 5mA. Every stored power trace was calculated
as an average power trace from ten power traces measured using the digital
oscilloscope to reduce electronic noise. More information about the testbed is
given in [12, 35]. Our other experiments with power analysis and implementation,
for example power consumption measurement of smart phone encrypted data,
are reported in [36, 37].

3 Proposed Optimization

The optimization is based on the preprocessing of power traces measured during
the first phase of the method, where the training patterns are prepared. During
this phase, the attacker tries to obtain the training patterns of power consump-
tion for the AddRoundKey and SubBytes operations for all variants of the secret
key byte k1 (256 possible variants). Figure 1 shows the power patterns for all
values of the secret key cut out from the whole power trace for the first byte, and
Fig. 3 shows a detail of the power peak at time t[n] = 6, 000. From these figures,
it is clear that the measured power traces are greatly synchronized and divided
into several groups. These power patterns were stored and used for the neural

6 Martinasek, Z., Hajny J., Malina, L.

network training in the original method proposal and implementation [1] (it was
used three times 256 power traces for neural network training). We magnified
the differences in the power traces measured to improve the classification results.
Increased differences were achieved by employing a preprocessing process based
on the calculation of average power traces corresponding to every key value. The
main principle of preprocessing is described in the following text.

The measured power traces are functions with discrete time. We denote the
measured power traces corresponding to every secret key value as P [i, n], where
n represents the discrete time n = {0, . . . , 12000}, and i represents all possible
secret key byte values from 0 to 255. Subsequently, we can calculate an average
trace Ā using the following equation:

Ā[n] =
1

256

255∑
i=0

P [i, n]. (1)

The training patterns for the optimized implementation are calculated as a
subtraction of measured traces from the average trace and are denoted as PD:

PD[i, n] = Ā[n]− P [i, n] =
1

256

255∑
i=0

P [i, n]− P [i, n]. (2)

Figure 2 shows the resulting power patterns after preprocessing and Fig. 4 shows
the corresponding power peak detail at time t[n] = 6, 000. The resulting pat-
terns were stored and used for the neural network training in the optimized
implementation. If we compare these two sets of patterns, it is clear that after
preprocessing the patterns show the places where the power traces are different.

4 Comparison of Classification Results

The neural network was implemented and trained in Matlab using the Netlab
neural network toolbox in the same way as described in [1]. The implementation
differs only in the preprocessing of power pattern according to the optimization
proposal described in Sec. 3. To compare the suitability of optimization, we
measured once again the whole set of power traces corresponding to all the
secret key values and this set was subsequently analyzed using the created and
trained neural network. The measured traces were stored in the matrix and all
matrix rows (all power traces) were classified using the neural network. In this
manner, we obtained classification results for all possible key values and the first
notion of how successful the optimized method is when compared to the original
implementation.

The classification of all power traces gave the matrices RD of dimension
255 × 255. The row index corresponds to the value of a secret key Ksec and
the column index corresponds to the value of a key estimate Kest. In other
words, the neural network assigned to every measured power trace a probability
vector for individual key estimates. Table 1 shows a really small part of the

Optimization of Power Analysis Using Neural Network 7

Table 1: Part of the resulting matrices.

Original implementation R Optimized implementation RD

... .
2 0.00% 0.00% 6.46% 0.00% . . . 0.00% 0.00% 92.86% 0.00% . . .
1 0.00% 66.42% 0.00% 0.00% . . . 0.00% 99.87% 0.00% 0.00% . . .
0 36.77% 0.00% 0.00% 0.00% . . . 98.23% 0.00% 0.00% 0.00% . . .

Ksec/Kest 0 1 2 3 . . . 0 1 2 3 . . .

resulting matrix RD together with the original results matrix R. From Tab. 1 it
can be seen that the neural network classified the power trace corresponding to
Ksec = 0 with a probability of 98.23% for the key estimate Kest = 0 and other
estimates with zero probability in the optimized implementation (we do not take
into consideration the whole output vector in this demonstration). The neural
networks classified the power trace corresponding to Ksec = 0 with a probability
of 36.77% for the key estimate Kest = 0 in the original implementation. From
this small comparison of the results obtained, we can confirm the increase in
the probability of correct key estimates. For example, probability estimates for
correct key 0 and 1 increased from 36.77% and 66.42% to 98.23% and 99.87%
respectively.

The whole matrix R of classification is shown graphically in Fig. 5 and ma-
trix RD is shown in Fig. 6. Each row of the matrix corresponds to the output
probability vector, which is the result of power trace classification. Each column
contains the probability of an individual key estimate. The main goal of the
method is to have the estimate key value equal to the secret key value after
classification. In other words, the function Kest = Ksec is true. The function
Kest = Ksec is visible in both matrices but in RD it is much more distinguish-
able because the correct classified probabilities consist of values between 90%
and 100% and thus the line is darker. The graphs also show the reduction of
alternative variants of classification and thus the absence of parallel lines with
the function Kest = Ksec in Fig. 6. The graphs displayed in Fig.7 and Fig. 8
confirm this desired property. These graphs show the classification results (out-
put probability vectors) for five chosen secret keys for both implementations.
Appropriate probability vectors for the chosen Ksec = 5, 41, 81, 129, 248 values
are distinguished by color and the optimized implementation is shown in Fig. 8
and original implementation in Fig. 7. If we compare the results, for example, for
the power trace Ksec = 5 of the optimized implementation, the increase in the
correct key estimate from 35% to 96% is clearly visible while other possible key
estimates were fully suppressed. This desired property, i.e. suppressing potential
key estimates was confirmed for the other three chosen secret keys (41, 81, 248).
For the last chosen power trace corresponding to the secret key 129, alternative
key estimates were also suppressed, except one, but the probability of correct
key estimate increased from 70% to 90%. From these results, we conclude that

8 Martinasek, Z., Hajny J., Malina, L.

Kest

K
se

c

0 50 100 150 200 250
0

50

100

150

200

250

0

10

20

30

40

50

60

70

80

90

100

Fig. 5: Graphically depicted matrix R.

Kest

K
se
c

0 50 100 150 200 250
0

50

100

150

200

250

0

10

20

30

40

50

60

70

80

90

100

Fig. 6: Graphically depicted matrix RD.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Kest

P
 [
%

]

 K

sec
 5

K
sec

 41

K
sec

 81

K
sec

 129

K
sec

 248

Fig. 7: Probability vector for five secret
keys of the original method.

0 50 100 150 200 2500

10

20

30

40

50

60

70

80

90

100

 Kest

P
 [%

]

Ksec 5

Ksec 41

Ksec 81
Ksec 129

Ksec 248

Fig. 8: Probability vector for five secret
keys of the optimized method.

proposed optimization allows a significant increase in the classification results
because the probability of correct key estimates is increased and the other pos-
sible key estimates are suppressed.

On the other hand, a complete suppression of alternative probabilities can
be negative, because the probability of a correct key estimate was always the
second highest probability for all erroneously classified keys in the original im-
plementation. The attacker would use this feature if it happened that the key
was badly classified at the end of the attack. If the optimization suppressed all
alternative possibilities of key estimates, similarly like in Fig. 8, the attacker
would not be able to try a second key estimate.

However, it is necessary to investigate all selected key estimates from the
tested set because during this investigation, the theoretical success rate about
80% was calculated in the original implementation. The main problem of wrongly
classified key estimations was the low value of the selected highest probability.
Figure 9 shows these selected highest probabilities of power traces corresponding
to all the values of the secret key for the original implementation. In other
words, it shows which key estimate was classified with the highest probability
for a specific power trace. The graph is displayed with two Y-axes for better
clarity. The X-axis represents the secret key values and the blue Y-axis shows the
probability of the highest selected probability while the red Y-axis corresponds

Optimization of Power Analysis Using Neural Network 9

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

P
[%

]

K
sec

0 50 100 150 200 250
0

50

100

150

200

250

K
e

s
t

selected highest probability

selected key estimate

Fig. 9: The highest selected probabilities
of original implementation.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

P
[%

]

K
sec

0 50 100 150 200 250
0

50

100

150

200

250

K
e

s
t

selected highest probability

selected key estimate

Fig. 10: The highest selected probabili-
ties of optimized implementation.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

P [%]

n
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s

Fig. 11: Histogram of highest probabili-
ties of original implementation.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

P [%]

n
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s

Fig. 12: Histogram of highest probabili-
ties of optimized implementation.

to the chosen key estimate. The shape of the function Kest = Ksec is again
clearly visible and only a few points interrupt the linear progression. From the
whole proofing set (256 power traces measured), the neural network classified a
wrong key estimate sixteen times in the original implementation. Classification
errors occurred for key estimates with low values of the highest probability. The
average value of the highest probability which led to the wrong classification
was 17%. From these results, the theoretical border of correct classification was
established as 20%. For key estimates with a selected highest probability lower
than 20%, the probability of wrong clasification is higher. Figure 9 shows that the
occurrence of 14%, 18% and 20% probabilities is no exception. Figure 11 displays
a histogram of selected highest probabilities for the original implementation.
From the histogram, it can be seen that probabilities of up to 10% occurred
twenty-one times while the probabilities of 10−20% occurred thirty-eight times,
which makes a total of 59 occurrences of all 256 values. The total number of keys
potentially predisposed to incorrect classification is about 23%, which means that
the original method theoretically works with a success rate of about 80%.

These results obtained from the first implementation were promising but
the success rate was not sufficient. This was the main reason why we tried

10 Martinasek, Z., Hajny J., Malina, L.

an optimized implementation to increase the selected highest probabilities and
thus reduce the wrongly classified keys. Figure 10 shows the selected highest
probabilities for the optimized implementation with the course of the function
Kest = Ksec is almost smooth and containing only nine wrongly classified keys. If
we compare these results with the first implementation results, we achieve a de-
crease in wrong classification from 16 to 9, which corresponds to an improvement
of 43%. These results clearly demonstrate the functionality and suitability of pre-
processing the power traces measured for classification using a neural network.
Nine wrongly classified key estimates correspond to 3.5% of the power traces
measured. Therefore, we can declare that the optimized method identified the
correct value of the secret key in 96.5% of cases. During repeated tests (another
training of the neural network with the identical training set), the optimized
method achieved a correct classification of 95− 98%.

Figure 12 displays a histogram of the selected highest probabilities for the
optimized implementation. From the histogram, it can be seen that probabilities
of 10% to 70% occurred only five times on average. Probabilities of 70% and 80%
occurred ten times and fifteen times, respectively. The largest representation in
the selected maximum probability is that of the 90% to 100% probabilities, which
occurred two hundred and five times. The histogram confirmed the increase of
the maximum probabilities, thus increasing the occurrence of the 90% probabil-
ity. The total number of keys potentially predisposed to wrong classification is
reduced from 20% to 5% after optimization.

5 Cross Validation

A ten-times larger set of power consumptions was measured and used for a
detailed comparison of the original and optimized method in the same manner
as described in [1]. Ten power traces were independently stored for each value
of the secret key. The set composed of 2, 560 power traces was classified using
neural networks in the same manner as described in the previous sections. The
number of wrongly classified key estimates and the overall success rate are given
in Tab. 2. The original method achieved a correct secret key classification in 85%
and the optimized method achieved a correct secret key classification in 94%.
These results confirm the previous results including the correct calculation of
the theoretical success rate and the necessity of optimization. We can state that
the optimized method achieved results that were better by 10%.

Table 2: Classification results for 2560 power traces.

Method Number of errors [-] Success rate [%]

Original implementation 378 85.23
Optimized implementation 139 94.57

Optimization of Power Analysis Using Neural Network 11

In the original paper, the cross-validation was not used for the verification
of the neural network. We decided to compare the original method with the
optimized method using the typical 10-fold cross-validation. In data mining and
machine learning, the 10-fold cross-validation is the most common method of
model verification. Cross validation is a statistical method of evaluating and
comparing learning algorithms by dividing data into two segments: one is used
to learn or train a model and the other is used to validate the model. In typical
cross validation, the training and validation sets must cross-over in successive
rounds such that each data point has a chance of being validated against. Our
set of 2560 measured power traces consisted of 10 power traces corresponding
to every secret key value, therefore we used 9 power traces for neural network
training and one for testing in every step of validation. The results of 10-fold
cross-validation are summarized in Tab. 3, where err denotes the number of
wrongly classified key estimates and err denotes the average value of wrong
estimates calculated from every step of the cross-validation.

Table 3: Number of errors for 10-fold cross-validation.

Step of cross-validation 1 2 3 4 5 6 7 8 9 10 err Success rate [%]

Original implementation err[−] 10 5 12 17 8 17 13 14 7 12 11.5 95.71
Optimized implementation err[−] 0 0 0 0 1 0 1 0 0 0 0.2 99.92

The results obtained reveal that the original implementation is able to classify
the secret key with a success rate of around 95%. It is better than the assumption
stated above. This difference is caused by the size of the training set. In the
original implementation, 3 power traces for every secret key value for neural
network training and one for testing were used. In comparison with the cross-
validation, 9 power traces for neural network training and one for testing were
used. The results of cross-validation confirm the positive impact of optimization
on classification results. The optimized method is able to classify the secret key
value with almost 100% success rate.

6 Conclusion

In the paper, we presented and realized an optimization method of the power
analysis based on multi-layer perceptron. The optimization was based on prepro-
cessing the measured power traces using the calculation of the average trace and
the subsequent calculation of the difference power traces. These power patterns
were used for neural network training and, naturally, during the attack phase.
We compared the classification results of the optimized method with the original
implementation and evaluated the positive and negative impact of optimization
on classification results.

12 Martinasek, Z., Hajny J., Malina, L.

The proposed optimization allowed a significant improvement in the classi-
fication results because the probability of correct key estimates was increased
and the other possible key estimates were suppressed. On the other hand, a
complete suppression of alternative probabilities can be negative because the
attacker is not able to try a second key estimate if the key estimate with the
highest probability is wrong.

In the original paper, cross-validation was not used to verify the neural net-
work and thus we compare the original method with the optimized method, us-
ing the typical 10-fold cross-validation. The result of cross-validation confirm the
positive impact of optimization on classification result. The optimized method
is able to classify the secret key value with almost a 100% success rate.

The features of the optimized method can be summarized in the following
points:

– optimization is computationally undemanding,
– places where power traces differ can be highlighted,
– probability corresponding to correct key estimations is increased,
– probability corresponding to incorrect key estimations is suppressed,
– number of keys potentially predisposed to wrong classification is reduced,
– negative impact consists in a complete suppression of alternative probabili-

ties.

Acknowledgments. This research work is funded by the Ministry of Indus-
try and Trade of the Czech Republic, project FR-TI4/647. Measurements were
run on computational facilities of the SIX Research Center, registration number
CZ.1.05/2.1.00/03.0072.

References

1. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengi-
neering 22(2), 586–594, (2013)

2. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: CRYPTO ’99:
Proceedings of the 19th Annual International Cryptology Conference on Advances
in Cryptology, London, UK, Springer-Verlag (1999) 388–397

3. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag New York,
Inc., Secaucus, NJ, USA (2007)

4. Joye, M., Olivier, F.: Side-channel analysis. In: Encyclopedia of Cryptography and
Security (2nd Ed.). (2011) 1198–1204

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: CHES. (2002) 13–28
6. Rechberger, C., Oswald, E.: Practical template attacks. In: Information Security

Applications, 5th International Workshop, WISA 2004, Jeju Island, Korea, August
23-25, 2004, Revised Selected Papers, volume 3325 of Lecture Notes in Computer
Science, Springer (2004) 443–457

7. Hanley, N., Tunstall, M., Marnane, W.P.: Using templates to distinguish multipli-
cations from squaring operations. Int. J. Inf. Sec. 10(4) (2011) 255–266

Optimization of Power Analysis Using Neural Network 13

8. Coron, J.S., Naccache, D., Kocher, P.: Statistics and secret leakage. ACM Trans.
Embed. Comput. Syst. 3(3) (August 2004) 492–508

9. Joye, M., Paillier, P., Schoenmakers, B.: On second-order differential power analy-
sis. In: Cryptographic Hardware and Embedded Systems - CHES 2005, 7th Inter-
national Workshop, Springer (2005) 293–308

10. Herbst, C., Oswald, E., Mangard, S.: An aes smart card implementation resistant
to power analysis attacks. In: Applied Cryptography and Network Security, Second
International Conference, ACNS 2006, volume 3989 of Lecture Notes in Computer
Science, Springer (2006) 239–252

11. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: CHES. (2004) 16–29

12. Martinasek, Z., Clupek, V., Krisztina, T.: General scheme of differential power
analysis. In: Telecommunications and Signal Processing (TSP), 2013 36th Interna-
tional Conference on. (2013) 358–362

13. Messerges, T.S., Dabbish, E.A., Sloan, R.H., Messerges, T.S., Dabbish, E.A., Sloan,
R.H.: Investigations of power analysis attacks on smartcards. In: In USENIX Work-
shop on Smartcard Technology. (1999) 151–162

14. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of fpga
bitstream encryption against power analysis attacks: extracting keys from xilinx
virtex-ii fpgas. In: Proceedings of the 18th ACM conference on Computer and
communications security. CCS ’11, New York, NY, USA, ACM (2011) 111–124

15. Plos, T., Hutter, M., Feldhofer, M.: Evaluation of side-channel preprocessing tech-
niques on cryptographic-enabled hf and uhf rfid-tag prototypes. In Dominikus, S.,
ed.: Workshop on RFID Security 2008, Budapest, Hungary, July 9-11, 2008. (2008)
114 – 127

16. Kasper, T., Oswald, D., Paar, C.: Side-channel analysis of cryptographic rfids with
analog demodulation. In Juels, A., Paar, C., eds.: RFIDSec. Volume 7055 of Lecture
Notes in Computer Science., Springer (2011) 61–77

17. Oswald, D., Paar, C.: Breaking mifare desfire mf3icd40: Power analysis and tem-
plates in the real world. In Preneel, B., Takagi, T., eds.: CHES. Volume 6917 of
Lecture Notes in Computer Science., Springer (2011) 207–222

18. Barenghi, A., Pelosi, G., Teglia, Y.: Improving first order differential power at-
tacks through digital signal processing. In: Proceedings of the 3rd international
conference on Security of information and networks. SIN ’10, ACM (2010) 124–133

19. Kim, H.M., Kang, D.J., Kim, T.H.: Flexible key distribution for scada network
using multi-agent system. Bio-inspired, Learning, and Intelligent Systems for Se-
curity, ECSIS Symposium on (2007) 29–34

20. Lian, S., Sun, J., Wang, Z.: One-way hash function based on neural network. CoRR
abs/0707.4032 (2007)

21. Wang, Y.h., Shen, Z.d., Zhang, H.g.: Pseudo random number generator based on
hopfield neural network. (August 2006) 2810–2813

22. Liu, N., Guo, D.: Security analysis of public-key encryption scheme based on neural
networks and its implementing. In: Computational Intelligence and Security, 2006
International Conference on. Volume 2. (nov. 2006) 1327 –1330

23. Mislovaty, R., Perchenok, Y., Kanter, I., Kinzel, W.: Secure key-exchange protocol
with an absence of injective functions. Phys. Rev. E 66 (Dec 2002) 066102

24. Fiona, A.H.Y.: ERG4920CM Thesis II Keyboard Acoustic Triangulation Attack.
PhD thesis, Department of Information Engineering the Chinese University of
Hong Kong (2006)

14 Martinasek, Z., Hajny J., Malina, L.

25. Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. In:
Proceedings of the 12th ACM conference on Computer and communications secu-
rity. CCS ’05, New York, NY, USA, ACM (2005) 373–382

26. Quisquater, J.J., Samyde, D.: Automatic code recognition for smart cards using
a kohonen neural network. In: Proceedings of the 5th conference on Smart Card
Research and Advanced Application Conference - Volume 5. CARDIS’02, Berkeley,
CA, USA (2002) 6–6

27. Kur, J., Smolka, T., Svenda, P.: Improving resiliency of java card code against
power analysis. In: Mikulaska kryptobesidka, Sbornik prispevku. (2009) 29–39

28. Martinasek, Z., Macha, T., Zeman, V.: Classifier of power side channel. In: Pro-
ceedings of NIMT2010. (September 2010)

29. Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based leak-
age characterization for practical security analysis of cryptographic implementa-
tions. In: Proceedings of the 14th international conference on Information Security
and Cryptology. ICISC’11, Springer-Verlag (2012) 169–185

30. Heuser, A., Zohner, M.: Intelligent machine homicide - breaking cryptographic
devices using support vector machines. In: COSADE. (2012) 249–264

31. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilis-
tic multi-class support vector machines. In: Proceedings of the 11th international
conference on Smart Card Research and Advanced Applications. CARDIS’12,
Springer-Verlag (2013) 263–276

32. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. J. Cryptographic Engineering
1(4) (2011) 293–302

33. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based
on machine learningn. In: COSADE 2011 - Second International Workshop on
Constructive Side-Channel Analysis and Secure Design. (2011) 29–41

34. Oswald, D., Paar, C.: Improving side-channel analysis with optimal linear trans-
forms. In: Proceedings of the 11th international conference on Smart Card Re-
search and Advanced Applications. CARDIS’12, Berlin, Heidelberg, Springer-
Verlag (2013) 219–233

35. Martinasek, Z., Zeman, V., Sysel, P., Trasy, K.: Near electromagnetic field measure-
ment of microprocessor. PRZEGLAD ELEKTROTECHNICZNY 89(2a) (2013)
203 – 207

36. Malina, L., Clupek, V., Martinasek, Z., Hajny, J., Oguchi, K., Zeman, V.: Eval-
uation of software-oriented block ciphers on smartphones. In: Foundations and
Practice of Security. Springer (2013)

37. Hajny, J., Malina, L., Martinasek, Z., Tethal, O.: Performance evaluation of
primitives for privacy-enhancing cryptography on current smart-cards and smart-
phones. In: Data Privacy Management and Autonomous Spontaneous Security.
Lecture Notes in Computer Science 8247, Springer Berlin Heidelberg (2013)

