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Abstract. Common template attacks are probabilistic relying on the
multivariate Gaussian distribution regarding the noise of the device un-
der attack. Though this is a realistic assumption, numerical problems
are likely to occur in practice due to evaluation in higher dimensions. To
avoid this, a feature selection is applied to identify points in time that
contribute most information to an attack. An alternative to common
template attacks is to apply machine learning in form of support vector
machines (SVMs). Recent works brought out approaches that produce
comparable results, respectively better in the presence of noise, but still
not optimal in terms of efficiency and performance. In this work we show
how to adapt the SVM template approach in order to considerably re-
duce the effort while carrying out the attack and how to better exploit
the side-channel information under the assumption of an attack model
with a strict order, e.g. Hamming weight model.
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port Vector Machines

1 Introduction

Side-channel attacks are still, even after years of intensive research, a serious
threat to cryptographic devices. New attacks challenge new algorithms and re-
spective countermeasures. Generally, side-channel attacks rely on the assumption
that any electronic device provides physically observable information on secrets,
usually a cryptographic key, embedded in the device. The spot from which the
information is extracted is referred to as a side-channel. There exist several dis-
tinct kinds of side-channels, for instance the power consumption, electromagnetic
emanation, or timings. In this work we focus on template attacks (TAs) [5], a
powerful side-channel attack since they are supposed to retrieve the most in-
formation of a side-channel leakage. TAs require a profiling phase to model the
noise of the device, assuming the noise to be multivariate Gaussian distributed.
In the subsequent characterization phase any dependency can be found using a
likelihood approach for similarities between different points in time of recorded



2 T. Bartkewitz and K. Lemke-Rust

power consumption traces. Therefore, TAs are dependent on these points in time
which are assumed to contain the most information given by the maximum key-
dependent variance. Besides the selection of such points which is often denoted
feature selection, one is also concerned with potential numerical problems and
the question whether the assumed noise model is adequate or not in order to
mount a successful TA.

To overcome these issues recent works investigated alternatives to the mul-
tivariate Gaussian approach. Machine learning in the form of support vector
machines (SVMs) is one of these promising alternatives. The SVM is a linear
binary classifier that decides to which of two classes an input vector belongs,
based on classified training data. Further, the SVM is independent of a certain
noise distribution. In [12] the authors focused on SVMs amongst other machine
learners and present attacks that predict key bits of a DES implementation. In
[10, 11] the authors exclusively focused on SVMs concentrating on the applica-
bility for template attacks. However, they did not provide an attack. In [9] the
authors extend the SVM approach from a single-bit model to a multi-bit model
and consequently introduce probabilistic multi-class SVMs. They showed that
the SVM based template attack outperforms the Gaussian approach in the pres-
ence of noise. Nevertheless, their approach is not optimal in terms of efficiency
and exploited side-channel leakage.

Our contribution: In this work we carry the SVM template attacks forward.
We first show how a tailored multi-class strategy can considerably reduce the
effort during the profiling and characterization phase. Second, we show how to
better exploit the side-channel leakage, including the introduction of a dedicated
feature selection, and compare it against several other TA approaches. We there-
fore assume an attack model with a strict order, e.g. Hamming weight model.

Organization of the paper: This paper is organized as follows: Section 2 briefly
introduces template attacks based on the Gaussian approach. Section 3 provides
a broad overview on support vector machines. In Section 4 we describe how
SVM based template attacks can be improved by means of efficiency and per-
formance. Finally, Section 5 reports our experimental results before we conclude
in Section 6.

2 Template Attacks

Template attacks usually consist of three steps. The first step is to select points
in time (often called points of interest or features) that are supposed to contain
a considerable proportion of the leakage information. Afterwards templates are
built involving the power consumption of a reference device, similar to the target
device, that is under the full control of the attacker. Eventually, the attack on
the target device is carried out by matching its power consumption leakage to
the templates.

Feature Selection The selection of points of interest within power traces is the
first issue in TAs we are concerned with. There are several methods to ob-
tain a set of points that could lead to a successful attack. Primarily, the points
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are selected according to their key-dependent variability, including known-key
DPA [18], pair-wise distance to the mean vectors [5], or using the sum of squared
pair-wise T-differences [8]. A more systematic approach is the principal subspace-
based TA where the principal component analysis (PCA) is applied to transform
the side-channel data into a low-dimensional subspace, figuring out the optimal
linear combination of points in time which show maximum variance with respect
to the side-channel leakage [1].

Template Building The application of templates implies two successive phases.
In the first phase templates are built according to Np selected points of interest

from several measured power traces {tid,k}
Nt
i=1 that are correlated to a function

which involve both, known input data d and a key k, respectively a part of it.
The traces are assumed to be drawn from a multivariate Gaussian distribution
N (tid,k|µd,k,Σd,k). Therefore, a single template τ d,k is equivalent to an estima-
tion of the mean µd,k and the covariance matrix Σd,k based on the selected
points, and corresponding to different pairs of {d, k}.

Key Recovery Attack In the second phase, given a new power trace tnew

d,k to be
characterized, the multivariate Gaussian probability density function

p(tnew

d,k |τ d,k) =
1√

(2π)Np |Σd,k|
exp

(
−1

2
(tnew

d,k − µd,k)>Σ−1d,k(tnew

d,k − µd,k)

)
(1)

is evaluated for each template. The maximum likelihood approach provides the
best fit, hence the higher the probability density the better the trace td,k fits
the respective template.

In order to avoid numerical problems in practice, mainly due to the inversion
of Σd,k, one can omit the covariances (off-diagonal values of Σd,k) to obtain so
called reduced templates [14]. This leads to a univariate approach since (1) can
then be rewritten as the product of the probability densities at each point of
interest

p(tnew

d,k |τ d,k) =

Np∏
i=1

1√
2πσ2

i

exp

(
−1

2

(tnewi,d,k − µi,d,k)2

σ2
i

)
(2)

considering them as being independent and thus uncorrelated.

In practice it is often not sufficient to recover the key, or a part of it, based
on a single trace to be characterized but based on a few traces. Usually, we apply
Bayes’ theorem [14]

p(k∗|tnew

d,k ) =
p(tnew

d,k |τ d,k) · p(k∗)
p(tnew

d,k )
(3)

in order to determine by which key the traces to be characterized were generated.
Here, p(k∗) is the prior probability and p(k∗|tnew

d,k ) the posterior probability of
each key candidate k∗.
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3 Binary Support Vector Machines

Support vector machines are suitable for solving classification, regression, and
pattern detection problems and belong to the category of sparse kernel machines.
Originally described in [20], the SVM is a non-probabilistic, linear, binary-class
decision machine whose output is a class label. The SVM is related to supervised
learning methods whose determination of the model parameters correspond to
convex optimization problems. This section follows the explanations in [2].

3.1 Mathematical Background of Binary SVMs

A binary-class classification problem can be described by a linear discriminant
function of the form

y(x) = w>x + b (4)

where w is a weight vector, and b is a bias. An input vector x is assigned to class
C− if y(x) < 0 and to C+ otherwise. Hence, the decision boundary corresponds
to the (D − 1)-dimensional hyperplane within the D-dimensional input space,
i.e. y(x) = 0. Since w>x = 0 for every x lying on the decision boundary, w
is orthogonal to every vector on the decision boundary and hence the normal
vector of the hyperplane. With the same argument, bias b = −w>x for every x
on the decision boundary. Suppose the training set consists of N input vectors
(row vectors) x1, . . . ,xN (vectors with an index belong to the training set in
the remainder) where each vector is associated to a class label ci ∈ {−1, 1}.
New vectors x are accordingly classified by the sign of y(x). For the moment,
it is assumed that the training set is linearly separable within the input space
D, which means we can find a pair (w, b) such that (4) satisfies ciy(xi) > 0
for all training vectors. That is, every training vector xi is correctly classified.
Naturally, we can find several pairs that separate the training set exactly but
not every solution will give the smallest generalization error [2] that states the
performance of classifying new vectors . In support vector machines this is solved
by introducing the approach of the margin which embodies the smallest distance
between the decision boundary to any input vector (Fig. 1). The best solution
is given by the pair (w, b) for which this margin is maximized. The orthogonal
distance of a vector x to the hyperplane is given by y(x)/ ‖w‖ (‖•‖ denotes the
Euclidean norm) and under the general constraint ciy(x) > 0 the maximum
margin can be achieved by finding

arg max
w,b

{min
i

[ci(w
>xi + b)]}. (5)

Finding a direct solution would be too complex. Since rescaling of w and b does
not affect the distance from any input vector to the hyperplane, we set

ci(w
>xi + b) ≥ 1, i = 1, . . . , N (6)

which means that for vectors that lie on the margin around the decision bound-
ary the equality holds. Consequently, the optimization problem has been reduced
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Fig. 1. Geometry of the separating hyperplane in support vector machines.

to maximize ‖w‖−1 which is equivalent to minimizing ‖w‖2. This is a quadratic
programming problem that can be solved by applying the method of Lagrange
multipliers ai, with respect to the Karush-Kuhn-Tucker (KKT) conditions [2].
The optimal solution of this Lagrangian optimization problem yields a represen-
tation of (4), s.t. w =

∑N
i=1 aicixi where the vectors xi for which ai > 0 are

called support vectors. Hence, to classify new vectors x we obtain

y(x) =

N∑
i∈S

aicix
>
i x + b where b =

1

NS

∑
i∈S

(ci −
∑
j∈S

ajcjx
>
i xj) (7)

and S is the set of indices of the support vectors, respectively NS the number
of support vectors.

3.2 Non-linear Classification: Introduction of a Kernel

So far it was assumed that the training set is linearly separable within the in-
put space D. If that does not hold the training set may be separable in the
higher dimensional feature space F > D, not to be confused with feature se-
lection. Therefore, the input vectors are transformed into that feature space by
Φ(x) which gives a vector product of the form Φ(x1)>Φ(x2) for x1,x2 ∈ RD.
A direct solution is computationally very intensive. Hence, a kernel function is
applied that behaves exactly like the vector product in F without even knowing
the concrete feature space, but also without having influence on the resulting
dimension.

3.3 Non-separable Case: Introduction of a Soft-margin

A linear separation, in the input space or in the feature space, can lead to a
poor generalization (large generalization error) in the case of overlapping class
distributions. Therefore, it makes sense to allow for misclassification of some
training vectors to achieve a separation anyway. To do so, slack variables and a



6 T. Bartkewitz and K. Lemke-Rust

trade-off parameter γ, often denoted box constraint, are introduced to penalize
misclassification leading to two kinds of support vectors (see [2] for details).
Those where ai < γ, support vectors which lie on the margin, and those where
ai = γ which are support vectors that are either correctly classified but inside the
margin or misclassified. For γ → ∞ the penalty prohibits misclassified vectors
and thus recovers the strict margin.

3.4 SVM Training and Classification

Training a support vector machine means solving the Lagrangian optimization
problem for the given training set. There exist a specific approach called se-
quential minimal optimization (SMO) [16] that breaks down the optimization
problem into many smallest problems where each of which only considers two
Lagrange multipliers at a time. The Lagrange multipliers are jointly optimized
under a linear equality constraint. The subsequent multipliers to be optimized
are then chosen heuristically. The SVM classification is done through the evalu-
ation of (7) making use of the parameters of the SMO training.

4 Template Attacks using Support Vector Machines

The approach is similar to common template attacks. The posterior key proba-
bilities are successively updated with each characterization trace applying Bayes’
theorem. Since TAs are a multi-class classification problem it is essential to turn
the actual binary SVM into a probabilistic multi-class SVM. Contrary to pre-
vious work [9] which follows a general probabilistic approach, we subsequently
present probabilistic multi-class SVMs tailored to fit template attacks.

4.1 Probabilistic Support Vector Machines

In order to use SVMs in an aggregated probabilistic approach, probabilistic deci-
sions of the class label c for new vectors are necessary. Maintaining the sparseness
property of SVMs it is proposed in [17] to fit a logistic sigmoid function to the
outputs y(x) of an already trained binary SVM to give the posterior conditional
probability

p(c = 1|x) =
1

1 + exp(A · y(x) +B)
(8)

that x belongs to the class c = 1. Clearly, p(c = −1|x) = 1 − p(c = 1|x). A
second training set should be involved to avoid severe overfitting (this will be
discussed in Section 5). The parameters A and B are found by minimizing the
cross-entropy error of the training set

arg min
A,B

−
N∑
i=1

ti log(pi) + (1− ti) log(1− pi) (9)

where ti = (sign[y(xi)] + 1)/2 and pi = p(c = 1|xi). Nevertheless, solving this
optimization problem in a numerical stable way is proposed in [13].
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4.2 Our probabilistic SVM Multi-class Approach

Previous work [7] investigates methods based on two strategies to turn a binary
SVM into a multi-class SVM. The one-versus-all strategy uses binary SVMs for
separating one multi-class from the joint set of all other multi-classes, whereas
the one-versus-one strategy applies binary SVMs for pair-wise distinguishing the
multi-classes. In [9] the authors preferred the one-versus-one strategy in order
to mount their attacks. In this work, we suggest our own method tailored for
template attacks with regards to the attack model.

Suppose the TA classification problem implies M distinct classes. Then, given
a new input vector x, we aim for posterior conditional probabilities p(Ωl|x) for
l = 1, . . . ,M and Ωl is the lth multi-class label. The classification is enabled by
a training set X̃ (traces) where for each training vector x̃j for j = 1, . . . , N the
correct multi-class label Ωl, relying on a certain attack model, is known.

Attack Model with a Strict Order We assume that the side-channel leakage leads
to splitting the measurement samples into a strict order according to the known
multi-class labels at the leakage-dependent points in time. More precisely, let
xΩl,t be an arbitrary scalar at point t of a trace that belongs to label Ωl, then
for each leakage-dependent point t we assume a strict ordering of the labels,
i.e. either xΩ1,t < xΩ2,t < . . . < xΩM ,t or, alternatively, xΩ1,t > xΩ2,t > . . . >
xΩM ,t. A well-known example of such an ordered leakage is the Hamming weight
model [14].

With such an attack model we train M − 1 SVMs using the training set X̃
and introduce binary-class helper labels ci,j to the training vectors, such that

ci,j =

{
1, {x̃j |x̃j belongs to Ωl with l ≤ i
−1, else

,
j = 1, . . . , N
l = 1, . . . ,M

(10)

when the ith SVM is under training, i = 1, . . . ,M − 1. These helper labels con-
vert the attack model multi-classes to binary-classes as requested by the SVM
classification model. Using the ith SVM afterwards to classify a new vector x we
get the multi-class overlapping probabilities p(

⋃i
l=1Ωl|x). That is, the ith SVM

gives the probability that x belongs to the classes before the ith hyperplane. Fig-
uratively, we construct the hyperplanes between the multi-class labels from the
left to the right as depicted in Figure 2. Recalling that the probabilities rely on
a distance measure between x and the separating hyperplane, each consecutive
probability p(

⋃i+1
l=1 Ωl|x), p(

⋃i+2
l=1 Ωl|x), . . . , p(

⋃M−1
l=1 Ωl|x) is even higher once x

was classified to belong to a multi-class before the ith hyperplane with a non-
negligible probability (cf. Fig. 2). This is due to the fact that the distance grows
in a positive manner and thus the probability grows since the binary-class sepa-
ration regarding x becomes even clearer. However, this is of course an undesired
result. We can overcome this drawback by training, again, M −1 SVMs but this
time starting with the last multi-class label ΩM , i.e. using (10) with reversed
signs. With this approach, going from the left to the right first and then vice
versa, we surround the correct multi-class label by two consecutive hyperplanes.
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1 1 1 −1 −1 −1 −1 −1

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 . . . ΩM

Fig. 2. For instance, the third support vector machine is trained which corresponds to
the hyperplane separating

⋃3
l=1Ωl and

⋃M
l=4Ωl. The binary-class helper labels ci,j for

the training vectors xj are given on top. Training vectors that belong to the multi-
classes Ω1, Ω2 or Ω3 (before the hyperplane) are classified with helper label 1, all other
training vectors (after the hyperplane) with −1.

In fact we do not need to train new SVMs since the separating hyperplanes
did not change, but merely use the complementary probabilities deferred by one
multi-class due to the surrounding. Suppose x indeed belongs to Ωi, then x is
right-bounded by the hyperplane i and left-bounded by the hyperplane i−1 and
thus related to the probabilities p(

⋃i
l=1Ωl|x) and 1 − p(

⋃i−1
l=1 Ωl|x). Hence, we

suggest using

p(Ωi|x) = p(

i⋃
l=1

Ωl|x) ·

[
1− p(

i−1⋃
l=1

Ωl|x)

]
(11)

=
1− 1

1+exp(Ai−1·yi−1(x)+Bi−1)

1 + exp(Ai · yi(x) +Bi)
, 1 < i < M, (12)

p(Ω1|x) = p(

1⋃
l=1

Ωl|x) =
1

1 + exp(A1 · y1(x) +B1)
, (13)

and p(ΩM |x) = 1−p(
M−1⋃
l=1

Ωl|x) = 1− 1

1 + exp(AM−1 · yM−1(x) +BM−1)
(14)

being the posterior conditional class probabilities.

Attack Model without a Strict Order If an attack model with a strict order is
not applicable, a one-versus-one strategy is mandatory. This means separating
each pair (Ωi, Ωj) for i < j ≤M which in turn results in training M(M − 1)/2
SVMs. The posterior conditional class probabilities are then given by

p(Ωi|x) =
∏
j 6=i

p[(Ωi, Ωj)|x belongs to Ωi]. (15)

4.3 SVM based Templates

As in the multivariate Gaussian approach, templates are built on the reference
traces first, here called the training set, by training M−1 or M(M−1)/2 support
vector machines where M denotes the number of classes according to our attack
model. Afterwards, we fit the sigmoid function with classification values from
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the SVMs involving a second set of reference traces. Hence, a single template
contains the Lagrange multipliers ai, the support vectors XS i ⊂ X̃, and the
bias bi plus the values Ai and Bi for the templates i, . . . ,M − 1, respectively for
i, . . . ,M(M − 1)/2. Please note that in the SVM approach templates are to be
characterized by the class separators and not by the class representatives.

4.4 Considering Feature Selection

Primarily, a prior feature selection is a dimensionality reduction to help figuring
out the most discriminative features in a given data set. However, this generally
means a loss of information that in turn affects the prediction performance of
classifiers.

For the Gaussian TA approach a priorly executed feature selection is cer-
tainly essential since it avoids numerical problems in practice which render the
evaluation of probability densities impossible. Further, it is assumed that the
exploitable side-channel leakage is hidden locally in the variability of only a few
points in time with respect to such probability densities [14]. Hence, the loss
of information is accepted and considered as loss of noise, respectively loss of
information that marginally contributes to the attack.

This looks different for the SVM approach where we aim for inter-class sep-
aration instead of intra-class densities. On the one side numerical problems due
to high dimensioned data do not occur and on the other dimensionality reduc-
tion methods such as PCA likely jeopardize the optimal performance of SVMs in
other applications [21]. In contrast to previous works [9–12] we suppose using the
linear kernel with a dedicated subsequent feature selection, called normal-based
feature selection, is optimal while presuming a linear attack model in template
attacks (cf. Section 4.2). The normal-based feature selection retains points in
time according to the weight vector w (cf. Section 3.1). It can be shown [3] that
a feature j which corresponds to a higher absolute value |wj | are more influential
in determining the optimal margin and thus improves classification performance.
Since we train several SVMs according to the attack model we disregard features
by setting the respective weights of w to zero instead of removing them from the
data set. One may argue that prior feature selection has the same effect but the
Lagrange multipliers ai that significantly determine the weight vector are still
found using the complete data set.

5 Experimental Results

For our experiments we used a Microchip PIC18F2520 microcontroller [15] run-
ning at 3.68 MHz. The power traces were acquired with a PicoScope 5203 and
a sampling rate at 125 MS/s using a 1 Ω-resistor in the ground line. The traces
were compressed with peak extraction [14] representing the full substitution
layer (S-boxes) in the first round of the AES (Advanced Encryption Standard).
Therefore, we chose the attack model to be the Hamming weight of the S-box
output. We thus have nine classes with a strict order (cf. Sec. 4.2).
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To produce comparable results to [9] we choose the guessing entropy [19] to
evaluate the attack performance. It states the average position of the correct key
within a descending ranking of the probabilities of all possible keys. However,
in order to introduce our adaptations we used our own SVM implementation
as described throughout this paper (see Appendix A for pseudo code) instead
of the C-SVC implementation of the LIBSVM library [4]. C-SVC also applies
SMO for training and the same probability model for classification, thus both
implementations are comparable.

In the following, we validate our SVM template attack against variants of it,
the SVM TA from [9], the common TA, and the common TA with prior PCA.
Our approach implies the here proposed multi-class method and the linear kernel
with the subsequent normal-based feature selection. As variants we replaced
the normal-based feature selection with prior feature selection, namely known-
key DPA (kkDPA) where the points in time with the highest correlation were
taken, respectively with the application of PCA. Further, we include the common
template attack with both known-key DPA and prior PCA. The SVM TA from
[9] uses the RBF kernel and known-key DPA. They also suggest an empirical
determined cost factor (box constraint) of γ = 10, respectively γ = 1 for noisy
measurements, and an empirical determined termination criterion of 0.02 that
states the fraction of vectors that are allowed to violate the KKT conditions. In
our experiments, however, we involve γ = 1 and termination criterion of zero,
as recommended in [6], for our and all other attacks. In order to simulate noisy
measurements we add Gaussian noise to the power traces, in particular Gaussian
noise with a standard deviation of σng = 5. We determined the intrinsic noise of
our measured power traces to be σn0

≈ 0.7.
Initially, we want to show how to disregard features with the help of normal-

based feature selection. As can be seen in Figure 3 the weights are linearly
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Fig. 3. Absolute values of the weights in ascending order. The weight vectors were
obtained from training 8 SVMs (HW attack model).
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increasing except the last few weights which increase exponentially. These are
the weights we retain and thus all the others were set to zero. In our experiments
we retain 8 weights. We also used 8 components from PCA and 8 points in time
with the highest correlation from known-key DPA.

Our performance comparison considers each template attack involving the re-
quired profiling, respectively characterization traces to reach a guessing entropy
of one. Thus, it states the minimum effort to always recover the correct key with
respect to our experiments. Furthermore, we depict the guessing entropies of the
attacks while our attacks possesses a guessing entropy of one.

Table 1 shows the results considering the original traces. It is observable
that template attacks based on SVMs perform better than common TAs. As

Table 1. Comparison of template attacks depicting the required amount of character-
ization traces along an increasing profiling base (traces per HW) to reach a guessing
entropy of one. The lower table depicts the guessing entropies while our TA reaches a
guessing entropy of one. The traces were involved with their intrinsic noise σn0 ≈ 0.7.

Profiling SVM based TA Common TA
base Our TA linear & kkDPA linear & PCA TA from [9] kkDPA PCA

10 33 98 71 289 – –
20 22 67 33 147 92 53
40 21 63 26 139 63 37
60 19 61 21 121 59 23
80 15 44 17 116 55 19
100 13 39 15 111 51 16

10 1 2.59 1.17 18.54 – –
20 1 2.57 1.15 16.75 7.51 1.62
40 1 2.58 1.15 18.72 6.58 1.15
60 1 2.58 1.08 18.10 4.91 1.10
80 1 2.08 1.08 17.53 3.46 1.10
100 1 2.08 1.08 18.43 3.74 1.08

expected each attack requires less characterization traces with an increasing
profiling base where best performance is almost reached with a profiling base
containing 100 traces per Hamming weight. However, with a too small profiling
base (10 traces per HW) the common attacks fail due to numerical problems
caused by the matrix inversion with the Gauss-Jordan algorithm. Our approach
performs well, especially with a small profiling base, whereas the attack proposed
in [9] using the RBF-kernel performs only suboptimal. This observation is even
more aggravated when comparing the guessing entropies. When our TA reaches
a guessing entropy of one the other attacks reduce the key space to at most four
except the RBF kernel based attack that reduces the key space to about 18.

Next, we evaluate the performance in the presence of higher noise. Table 2
depicts that in this case PCA is not the optimal choice for feature selection. Both
TA approaches lead to inferior results when using PCA instead of known-key
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Table 2. Comparison of template attacks depicting the required amount of character-
ization traces along an increasing profiling base (traces per HW) to reach a guessing
entropy of one. The lower table depicts the guessing entropies while our TA reaches a
guessing entropy of one. The traces were involved with added noise σng , thus σn1 ≈ 5.7.

Profiling SVM based TA Common TA
base Our TA linear & kkDPA linear & PCA TA from [9] kkDPA PCA

10 81 121 149 1100 – –
20 62 93 112 365 650 920
40 56 84 94 312 158 344
60 51 73 84 153 112 146
80 46 62 79 144 96 124
100 43 58 73 138 92 121

10 1 1.18 1.66 41.25 – –
20 1 1.14 1.62 13.54 15.524 14.37
40 1 1.12 1.54 7.8 11.22 12.02
60 1 1.12 1.52 7.75 4.91 5.55
80 1 1.12 1.46 7.57 2.95 3.58
100 1 1.12 1.36 7.58 2.96 2.81

DPA. Our approach still performs well but the results altogether are also a bit
closer now. The RBF kernel based attack performs slightly better and can finally
reduce the key space to eight.

Eventually, our findings indicate that SVM based template attacks do not
perform best with the RBF kernel. Admittedly, our results concerning the RBF
kernel were obtained using our multi-class strategy instead of the usual one-
versus-one strategy but we suggest this has no crucial negative impact. Actually,
the good performance of a linear kernel should not be surprising since template
attacks usually imply a linear classification problem whereas the RBF kernel is
appropriate for non-linear problems. The linear kernel also performs well with
prior feature selection, i.e. known-key DPA and PCA but the normal-based
feature selection is very simple, and furthermore it provides better results with
a small profiling base. The computational effort of our SVM based attack is in
the range of seconds and hence negligible when compared to common TAs.

6 Conclusion

In this work we showed how to improve the performance of template attacks
based on support vector machines. Although previous works already demon-
strated the advantages of such template attacks, their approaches were not opti-
mal in the sense of efficiency and performance. First of all we proposed a multi-
class method tailored for TAs which lead to training less SVMs under a attack
model with a strict order, e.g. the Hamming weight model. Next, we showed that
the subsequent feature selection after the training called normal-based feature
selection together with the linear kernel leads to superior results than using it
with a prior feature selection, namely known-key DPA or PCA, respectively.
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A Algorithms for SVM Based Template Attacks

Required adaptations for an attack model without a strict order infer from Sec-
tion 4.2.

Algorithm 1 SVM Template Building

Input: Training set X̃ with N traces related to labels Ω1, . . . , ΩM , and constraint γ
Output:M−1 templates (ai, bi, XS i ⊂ X̃, Ai, Bi)

1: for i = 1 to M − 1 do
2: for j = 1 to N do
3: if x̃j belongs to Ωl with l ≤ i then cj ← 1 else cj ← −1
4: end for
5: ai, bi, XS i ⊂ X̃ ← SMO-training [6] with X̃, (c1, . . . , cN ), and γ

6: Ai, Bi ← Sigmoid-training [13] with ai, bi, XS i ⊂ X̃, and X̃
7: end for

Algorithm 2 SVM Template Classification

Input: M − 1 templates (ai, bi, XS i ⊂ X̃, Ai, Bi), and new trace x
Output: Posterior probabilities p(Ω1|x), . . . , p(ΩM |x)

1: for i = 2 to M − 1 do
2: p(Ωi|x) acc. to (12) with (aj , bj , XS j ⊂ X̃, Aj , Bj) for j ∈ {i− 1, i}
3: end for
4: p(Ω1|x) acc. to (13) with (a1, b1, XS1 ⊂ X̃, A1, B1)

5: p(ΩM |x) acc. to (14) with (aM−1, bM−1, XSM−1 ⊂ X̃, AM−1, BM−1)


