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Abstract. We consider the transfer of digital data over a leaky communication channel, that
releases side-channel emissions and prevent the attacker from accurately measuring these emissions.
The method pairs each secret key k with a camouflage value v and simultaneously transmits both
k and v over the channel. This releases an emission e(k, v). We wish to select the camouflage values
v(k) as a function of k in a way that makes the quantities e(k, v(k)) as indistinguishable as possible.
We model the problem and show that optimal camouflage values can be effectively derived from a
limited amount of a priori measures over emission traces (just as the attacker will do), under very
weak physical assumptions. Consequently, the model is applicable across a wide range of readily
available technologies.
We propose a statistical analysis of camouflage, in one, two and more dimensions. We discuss
algorithms for inferring the best camouflage values from actual emission traces. Our algorithms are
efficient for low dimensions (say up to 4) and heuristic beyond.
We provide some experimental results obtained on some memories, buses and IO emissions from
other tamper-proof black-boxes.

1 Introduction

In addition to its usual complexity postulates, cryptography silently assumes that secrets can
be physically protected in tamper-proof locations. All cryptographic operations are physical
processes where data elements must be represented by physical quantities in physical structures.
These physical quantities must be stored, sensed and combined by the elementary devices (gates)
of any technology from which we build tamper-resistant machinery.

At any given point in the evolution of a technology, the smallest logic devices must have a
definite physical extent, require a certain minimum time to perform their function and dissipate
a minimal switching energy when transiting from one state to another. Energy is also dissipated
statically, i.e. in the absence of any switching.

During the last twenty years, the research community devised a wealth of sophisticated
methods for retrieving secret information from circuits by measuring their energy emanations.

In practice, most of the internal variables in current VLSI have an energy foot-print which
is small enough to be invisible at the space/time resolution of all available energy measures.
Yet, some other variables (e.g. capacitive internal bus, IO pad, . . . ) have an energy footprint
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which is large enough for the corresponding signal to be externally measurable in a statistically
reliable way. We refer the reader to [1] for a detailed presentation of the statistical power model
applied here, and an analysis of classical counter-measures against side-channel attacks.

A number of authors, e.g. [1], rely on the switching-model where each bit of an isotropic
channel dissipates the very same switching energy as any other. This work assumes no a-
priori model (such as the switching-model) of the channel’s emissions. Our a posteriori models
exclusively result from actual measured emissions, with anisotropy.

1.1 Content

Unlike many previous works that analyzed the exploit leakage during complex cryptographic
computations, we what is probably the simplest setting of all: the emanations from a passive
channel through which bits are transmitted, and we only make two physical assumptions:

Leaky The side-channel emanations can be experimentally measured, from inside or outside
the chip. We grant the attack and defense with the same measures, at equal resolution.

Small The spacial resolution of these measurements extends beyond the physical area of the
channel. We thus forbid the attacker from individually probing any channel bits, or even
from separating the channel’s power footprint into lower and upper half-width.

Despite these assumptions, the proposed methodology remains applicable across a wide
range of existing technologies, where two components communicate through a leaky bus.

The proposed defense pairs each secret key k with a camouflage value v and simultaneously
transmit k and v through the channel. This releases a physical side-channel emanation e(k, v)
which can be measured as such by both the attacker and the defender.

We address the following question:

How can a defender pair each key k with a value v which makes e(k, v) as indistinguishable
as possible from e(k′, v′), for all other keys k′?

The crux of this paper is the definition of indistinguishability, given the measured emission
traces.

Section 3 uses statistical analysis to show that the best defense is to choose the camouflage
values v gathering the emanations e(k, v) from all keys k into the smallest ball spanning all
keys/colors.

Before, section 2 exploits this geometrical characterization to extract optimal camouflage
values from actual power traces. The algorithms presented compute the optimal efficiently in
low dimensions, and through heuristics beyond.

Section 4 provides some experimental results and measures regarding the proposed defense
strategies, including the key special case of a memory bus.

2 Models and Algorithms

We let ed represent the physical emission (e.g. power consumption) which results from the
transfer of data d < N = 2n through the n bits of a digital channel (e.g. a memory bus). We
assume that ed can be measured with equal precision by both the attacker and the defender.
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The defender relies on first building a set (i.e. data-base, trace) of statistically meaningful
emission measures E . Each point e ∈ E is assigned to the data point d = e · d < N which
contributes emission e = ed.

Based on E , the defense assigns s channel bits to the secret keys k < S = 2s, and the
remaining n− s for the camouflage value vk < 2n−s.

We let d(k, v) < N = 2n represent the actual data, i.e. the bits of k and vk mapped/interleaved
onto the channel, and we note by e(k, v) = ed(k,v) an emission measured while transferring k
and v through the channel.

The vector V = [v0 · · · vS−1] represents all camouflage values. It is chosen to make all
emanations due to the secret bits look ”as alike as possible”. The choice is based on the actual
measures E .

We assign a unique color e · c = k to each point e ∈ E , indexed by its key k < V . We view
the trace E as a multi dimensional cloud of colored point.

A color-spanning ball is a subset B ⊂ E of the traces which contains at least one emission
per color from each and every color.

The traces E upon which the defense is built cover all N data transfers. The traces A(V )
which the attack may build only cover the S pairs k, vk, i.e. the color-spanning ball:

A(V ) =
∪
k<S

{e ∈ E : e · d = d(k, vk)}.

The best strategy for defense is to minimize the size ∥A∥ of the color-spanning ball A = A(V )
which remains exposed to attack.

Our aim is thus to compute/extract from E a smallest color-spanning ball S such that

∥S∥ = min
V
∥A(V )∥,

i.e. S has the least size for all choices of V , and the absolute difference |e − e′| between two
scalar e, e′ ∈ E is used as a similarity measure.

2.1 One Dimension

We assume here that ed is a scalar - say the average power consumption carefully sampled after
the clock edge during the transfer of data d < N = 2n, and we measure the N reference traces:

E = {e0 · · · eN−1}.

Choosing the camouflage values V = [v0 · vS−1 reduces the emissions to

A(V ) = {e(k, vk) : k < S},

and our goal is to minimize ∥A(V )∥ = maxk(e(k, vk))−mink(e(k, vk)).
Let P = [p0 ≤ p1 ≤ · · · ≤ pN−1] represent the sequence of emissions in E , sorted by scalar

value, and indexed by colors pi · c.
A color-spanning segment is an interval in [p0; pN−1] which contains at least one emission

value of each color. We construct a smallest color-spanning segment in time proportional to the
number N of measurements in the sorted sequence E.



4

Let Si be the smallest color-spanning segment whose point of greatest value - that is, the
rightmost extremity of the segment - is pi. The smallest color spanning segment is clearly one
of the Si, for some value i. Thus we compute all the Si, and output that of minimal length: it
is the smallest color-spanning segment.

We define for each color c and index i

lasti(c) = max
c=pj ·c
j≤i

(pj) ,

i.e. the emission pj of color c which closest to, and to the left pj ≤ pi of pi - if any. We also
consider first(i) = minc(lasti(c)).

When it is defined, segment Sk = [first(i); pi] spans all colors: by construction, the color
first(i)·c of its least value appears exactly once. It follows that there is no smaller color-spanning
segment ending with pi.

This allows the following linear time algorithm to compute every Si, extract the minimal
length, and return the smallest color-spanning segment.

Algorithm 1: Smallest color spanning segment algorithm

for i ∈ [0;N ] do
last[p[i] · c]← i ;
first← min(last) ;
if Every entry of last is properly defined then

S[i]← [first; p(i)] ;
L[i]← p(i).value− p(first).value ;

return S[argmink(L[i])]

Here S stands for the list of the computed segments Si, and L for the length of these
segments.

2.2 More Dimensions

We now consider the general case where e is a d-dimensional vector, e.g. a power consumption
sample taken at d different clock cycles. The set E of traces is now a d-dimensional cloud of
colored points, the color being defined by the key k. As a measure of similarity between a set
of given points, the size of the smallest enclosing balls of these points makes sense. We must
therefore determine the smallest ball containing at least one point of each color - that will, from
now on, be called the smallest color-spanning ball.

As a finite set of points, our cloud is contained in a minimum enclosing d-dimensional
rectangle R. We assume that the sides of this rectangle are parallel to the coordinate axis.

The general algorithm We can apply a divide and conquer method to the current problem.
Let B be a ball of radius r such that B contains at least one point of each color (B is not
necessarily optimal). If r is less than half the maximum length l of the sides of R, we split R
along its longest side so that each sub-spaces has size l

2 + r on the coordinate corresponding
to the maximum side of R, as described in Figure 1. Let R1 and R2 be the two equally sized
sub-spaces obtained this way.
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Fig. 1. Definition of the sub-rectangles

The smallest color-spanning ball is fully contained in R1 or R2, by construction, so that we
can recursively find the smallest color-spanning balls in R1 and R2, and keep the smallest ball
of the two. This solution will indeed be the smallest color-spanning ball of the original problem.

If the ball B is too large to split the space (for example, if every point is contained in R1)
we use a brute force method instead: if there are c colors we compute, for each c-tuple of points
with different colors, the smallest ball containing these points. We then take the minimal ball.
There are several methods to find such a ball: [2] describes a simple linear (in expectation)
algorithm in two dimensions and Welzl ([3]) showed how to find it in all dimensions in linear
time, if the dimension is fixed. However the complexity with respect to the dimension may be
exponential.

Algorithm 2: Smallest color-spanning ball computation

Find a color-spanning ball B in the rectangle R with a heuristic method ;
Split R in two sub-rectangles R1 and R2 according to B ;
if R1 or R2 contains every point then

Use a brute force method on the current rectangle R ;

else
Compute recursively the respective smallest color spanning balls R1 and R2 of the
two sub-rectangles R1 and R2 ;
return B′ = the smallest of the two color-spanning balls R1 and R2

The main problem is the choice of B: we want it small enough to significantly reduce the
search space of the divide and conquer method, especially for the final brute force, while being
easy enough to compute. In the next subsection, we discuss the choice of a heuristic method to
compute a small (but not always smallest) color-spanning ball.
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Fig. 2. Example of an output from the program, in 2 dimensions.

Heuristics and Methods We used the following method to find a first ball B: let p1 be a
point (for example the closest point to the center of R) with color 1 (assuming the colors are
numbered from 1 to c). If we assume p1, ..., pk are properly defined, pk+1 is a point of color
k+1 and with minimal distance to the barycenter of the previously computed points p1, ..., pk.
If we assume that there are n points in each color, the complexity of this process is O(n × c).
B is not necessarily optimal, as shown in Figure 3.

Fig. 3. The optimal ball (left) is different from the ball found by the heuristic (right) if the heuristic consider
first the red color, then blue and finally green

2.3 Implementations

Algorithms were implemented in C++6 in a straightforward manner. A function

bool smallest_ball(points, space, output)

splits space and points as explained above (using a ball found with find_ball_barycenter)
and calls recursively smallest_ball on the smaller spaces, until this process stops to decrease

6 the code is available at http://perso.ens-lyon.fr/quentin.fortier/color ball.html
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the size of the problem. We then use Miniball7, a C++ software for computing smallest enclosing
balls of points in arbitrary dimensions (without the need for a ball to contain at least one point
of each color) in a brute force manner. The description of Miniball can be found in [4], and it
is based on [3].

All presented timing results were measured on a (Dell inspiron 1520 with Intel Core 2 Duo
T7300) Processor (2.0GHz, 4MB L2 cache, 2Go memory) with compilation achieved through
Visual C++ 2008 (all optimization flags set for maximum speed).

Total number of points 2 colors 3 colors 4 colors 5 colors

100 11ms 39ms 309ms 2214ms

1000 164ms 1156ms 10s 147s

10000 2233ms 16s 160s

100000 27s 188s 2240s (37min)

1000000 287s 1937s (32min) > 1 hour > 1 hour

Table 1. Running time for points randomly chosen in the 4-dimensional unit cube, averaged over 10 runs

Total number of points 2 colors 3 colors 4 colors 5 colors

100 8ms 11ms 43ms 211ms

1000 96ms 221ms 833ms 7s

10000 946ms 3s 11s 81s

100000 10s 31s 145s 953s

1000000 109s 327s

Table 2. Running time for points randomly chosen in the 3-dimensional unit cube, averaged over 10 runs

As shown in Table 1, in practice the algorithm is linear in the number of points and exponential
in the number of colors.

3 Why Use Euclidean Distance?

Let {m0(t), . . . ,mn−1(t)} be a database of n reference power consumption traces8, the sample
mi,t = mi(t) corresponds to the power consumption at instant t caused by the manipulation
of data element i. Let µt be the average power consumption at time t and σt the standard
deviation at time t, i.e.:

µt =
1

n

n−1∑
i=0

mi,t σt =

√√√√ 1

n

n−1∑
i=0

(mi,t − µt)2

7 http://www.inf.ethz.ch/personal/gaertner/miniball.html
8 defined over some discrete time interval t ∈ [0, . . . , τ − 1].
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Let at be an unidentified power measurement made by an attacker. The attacker’s problem
consists in finding the mk,t that best reassembles at. The following section will justify why,
classically for doing so, an attacker would naturally compute for 0 ≤ i ≤ n− 1 the quantities:

score(i) =

τ−1∑
t=0

(at −mi,t)
2

σ2
t

(1)

and output the guess k corresponding to the mk,t whose score is the lowest i.e.:

score(k) = min
0≤i<n

(
score(i)

)
This formula is justified in the next section in the special case where the mi,t samples are

t-wise independent.
In general, the samples can be correlated, for instance when the same secret bit is manip-

ulated at two different instants. We analyze this general case later, and propose an explicit
formula (2) for the score to minimize, which accounts for correlations between samples.

3.1 Multivariate Normal Distribution

Equation (1) stems from the assumption that, for any fixed i, successive measurements of mi,t

follow an independent normal distribution with mean µt and standard deviation σt, and hence
abide by the probability density function:

fmt(x) =
1

σt
√
2π

exp
(
−(x− µt)

2

2σ2
t

)
When the mi,t’s are independently distributed, the probability density of all measurements

mt over 0 ≤ t ≤ τ − 1 can be expressed as a τ -dimensional multivariate distribution:

fm(x) =

τ−1∏
t=0

fmt(xt) =
1

(2π)τ/2
τ−1∏
t=0

σt

exp
(
−

τ−1∑
t=0

(xt − µt)
2

2σ2
t

)

where x = (x0, . . . , xτ ).

Note that in the previous equation µt and σt are the expected value and standard deviation
of mi,t over all data elements i. For a measurement mi,t corresponding to a specific data element
i, we can also assume that mi,t follows a normal distribution with mean µ̃t = mi,t and standard
deviation σ̃t; we also assume that the standard deviation σ̃t around mi,t is the same for all data
elements. In this case, the measurement mt corresponding to data element i has the following
distribution:

fm(x) =
1

(2π)τ/2
τ−1∏
t=0

σ̃t

exp
(
−

τ−1∑
t=0

(xt −mi,t)
2

2σ̃2
t

)

Additionally, we assume that the standard deviation σ̃t of mt around mi,t is proportional to
the standard deviation σt of mt when all data values are considered, i.e. we assume σ̃t = α · σt
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for all 0 ≤ t ≤ τ − 1 for some α ∈ R. In this case, the probability density function of the mt’s
for data i can be written as:

fi(m) =
1

(2π)τ/2ατ
τ−1∏
t=0

σt

exp
(
−

τ−1∑
t=0

(mt −mi,t)
2

2α2σ2
t

)
∝ exp

(
− score(i)

2α2

)

where score(i) is given by equation (1). The probability to obtain measurements mt from
data i is thus a decreasing function of score(i). Given measurement m the most probable
candidate is therefore the one with the lowest score.

3.2 Multivariate Normal Distribution: Taking Correlation into Account

We denote by Σ the covariance matrix of the measurements, defined as follows:

Σ = var(m) = var

m1
...

mτ

 =


var(m1) cov(m1m2) · · · cov(m1mτ )

cov(m1m2)
. . . · · ·

...
...

...
. . .

...
cov(m1mτ ) · · · · · · var(mτ )


where cov(X,Y ) = E(XY )− E(X)E(Y ) and var(X) = E(X2)− E(X)2.

We assume that the measurements follow a τ -dimensional multivariate distribution with
mean µ and covariance matrix Σ. The probability density function can then be expressed as:

fm(x) =
1

(2π)τ/2|Σ|1/2
exp

(
−1

2(x− µ)′Σ−1(x− µ)
)

where |Σ| is the determinant of Σ. Note that mean µ is a τ -vector and Σ is a τ × τ -matrix.

Note that in the previous equation µ and Σ are the expected value and covariance matrix
of measurements for all data elements i. As previously, for measurements corresponding to a
specific data element i, we also assume that the measurements follow a τ -multivariate normal
distribution with mean µ̃t = mi,t and covariance matrix Σ̃;

We also assume that Σ̃ is the same for all data elements. In this case, the measurement m
for data element i follows the multivariate distribution:

fm(x) =
1

(2π)τ/2|Σ̃|1/2
exp

(
− 1

2(x−mi,·)
′Σ̃−1(x−mi,·)

)
As previously, we additionally assume that the covariance matrix satisfies Σ̃ = α · Σ for some
α ∈ R. In this case, the probability density function can be written as:

fm(x) =
1

(2πα)τ/2|Σ|1/2
exp

(
− 1

2α(x−mi,·)
′Σ−1(x−mi,·)

)
which gives:

fm(x) =
1

(2πα)τ/2|Σ|1/2
exp

(
− score(i)

2α

)
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where:

score(i) = (m−mi,·)
′Σ−1(m−mi,·) (2)

Therefore we obtain that equation (2) is a generalization of equation (1) when taking corre-
lations into account. In other words, to take correlations into account acquire at and compute
for every i the score as per equation (2), sort the scores by increasing values and bet on the
smallest.

Bivariate Example To illustrate the procedure consider the bivariate case where the covari-
ance matrix between variables X and Y is:

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
where var(X) = σ2

x, var(Y ) = σ2
y and cov(X,Y ) = ρσxσy where ρ is the correlation between X

and Y . In this case, we have:

Σ−1 =
1

1− ρ2

 1
σ2
x

−ρ
σxσy

−ρ
σxσy

1
σ2
y


and the probability density function can be written:

f(x, y) =
1

2πσxσy
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
x2

σ2
x

+
y2

σ2
y

− 2ρxy

σxσy

])
In this case, equation (2) gets simplified as follows:

si =
(a1 −mi,1)

2

σ2
1

+
(a2 −mi,2)

2

σ2
2

− 2ρ(a1 −mi,1)(a2 −mi,2)

σ1σ2

where σ1 = var(m1), σ2 = var(m2) and ρ is the correlation between m1 and m2.

4 Experiments

Experimental results will be included in the final paper.
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