Manipulating the Frame I nformation With an
Underflow Attack

Emilie Faugeron

Thales Communications and Security
18, avenue Edouard Belin BPI 1414
31401 Toulouse Cedex 9, France
em |lie.faugeron@ hal esgroup. com

Abstract. This paper presents an underflow attack performedlava Card

platforms. This underflow is based on the x instruction that can be used in
order to read and modify the current context ofcexien of the attacker’'s

application. We first detail the theoretical andagiical attack path by
describing the method that can be used to chaizetdre platform and exploit
the obtained information. Secondly, we show hovs ipossible to set up this
underflow attack in a way that makes it bypass dheent concept of Byte
Code Verifier. Finally, we describe some countermess that can be
implemented to prevent this kind of attack.

Keywords: Malicious application, Underflow, Java Card Opertfplan

1 Introduction

Java Card technology allows loading and executisgtaof applications in a secure
way on a small device. This technology is widelgdiby smart card industry today
and has been proved to reach a high level of ggdarthe common context of use,

i.e. single issuers mastering their production a¥al Card platform and related
applications. Nowadays, the use of those Java @ltforms is becoming more

complex. In the field of telecommunication applioas, for instance, the context is
moving to multi-applications provided by differeissuers for different Java Card
platforms. Platforms refer to the combination ofecure hardware device and a
secure Operating System including the Virtual Maehithe Runtime Environment

and APIs. The concern is to check how multiple afsplloaded on a Java Card
platform by multiple actors, can be handled in @use way and maintain the security
of the product over its whole lifecycle.

Open Java Card platforms, enabling post-issuappketloading and induce a new
actor that is responsible of application validatimdeed, the Verification Authority is
in charge of verifying the basic application agaitiee platform guidance. It shall
include at least an off-card verification of theplgation. If the application is invalid,
it is rejected and cannot be loaded onto the tadgptatform. Therefore, an attacker
has two possibilities to bypass the concept of B@ede Verification: either

developing a malicious application in a way thatre@ be detected by the Off-Card
Verifier, or implementing a combined attack in arde perturb the application
behaviour during its execution using a laser orctEtdagnetic pulse device. In the
first case, all logical attacks using applicatiole format manipulation are to be
discarded otherwise they will be detected by thie@2ird Verifier. The attacker needs
so to identify weaknesses on the Java Card platltrdCRE (Java Card Runtime
Environment) level or at JCVM (Java Card Virtual dhane) level that could allow
performing purely software attack. It can be a wemls in the platform
implementation, or a known weakness regarding &ava platform specification as
explained in [1]. For instance, the Shareable fater mechanism can be abused in
order to perform a type confusion attack that wit be detected by the Off-Card
Verifier.

The Java Card platforms are sensitive to sevegpaistof malicious applications. It
can be address forging attacks by modifying specfAP component [2] [3], type
confusion attacks [1] [9] or underflow attacks [&]D]. The first and second kinds of
attacks are not relevant in that context: the fose is detected by the Off-Card
Verifier, and the second one does not allow reading modifying the context of
execution of the application directly. On the otliand, the third one enables an
attacker to manipulate the system information.

In this paper, we are going to focus our analysisthe underflow attack that
allows manipulating the execution frame of a metlasdociated to the current
executed application. In the first part of this weve descibe the theoretical and the
practical attack path with a particular focus o@ thup_x instruction that will be used
to read and modify the frame information. In thesw® part, we detail the means that
can be used by an attacker in order to bypass uhert concept of Byte Code
Verifier. Indeed, the attack described in this pagen be performed by an attacker
without privilege. The attacker just needs to béeaip develop an application.
Finally, we present the countermeasures that camplemented by the developer to
prevent these attacks.

2 Underflow attack: state of theart

The underflow attack presented in this paper difftnom previous works. Our
hypothesis is that the malicious application isifiet by Off-Card-Verifier and it
uses a new type of potential vulnerability in thetform implementation.

To go back to previous work, the underflow attabkse been introduced in [8]
and in [10]. The thesis [10] describes underflotaeks at a high level and is focused
on countermeasures to protect a platform againsh sattack. The aim of an
underflow attack described in [8] is to find thesjiimn of the return address onto the
stack and then modify it in order to execute a ctmmted inside an array. This
underflow is performed by using non-existing locariables in order to access
information located below the stack bottom. Theepursoftware attack takes the
hypothesis that there is no bytecode verificatienfggmed on the application (off-
card verification or on-card verification).

Two different methods that can allow an attackempassing the Off-Card
Verification are described in [1]. The first attaclethod aims abusing the transaction
mechanism in order to create a type confusion. @ttéck is now detected by most of
the platforms and cannot be applied to underfloyn@ore. The second attack method
aims to abuse the Shareable Interface mechanisengddl is to create type confusion
using two definitions of interfaces, one for thée@t and one for the Server. Actually,
the attack methods described in [1] only focusyge tconfusion.

The aim of our paper is to describe a new wayxpiaiting the underflow attack
despite off-card verification. Indeed, this papesdibes an underflow using the
instruction dup_x that is usually not checked bycand countermeasures due to the
fact that the stack pointer is not decreasing atehd of the instruction processing
(this kind of verification is dependent of the fdan implementation). The final goal
of our attack is to replace the context of theckitea's method with the JCRE context
in order to gain access to out-of-context data ¢odble to dump and modify
information link to the platform or to a sensiti@pplication.

This attack considers that the malicious applicatis verified by Off-Card-
Verifier. Indeed, we have extended the attack dlesdrin [1] in order to create an
underflow. We have implemented two different wayfsbgpassing the off-card
verification: (1) abusing the Shareable Interfacechanism to create an underflow,
(2) abusing the library versioning to create anasfidw. All steps of the attack will
be further described in this paper.

3 Underflow attack: theoretical attack path

The aim of the underflow attack is to retrieve amodify the elements located before
the stack of the current executed method.

All the instructions that pop elements from thackt can be used in order to
perform a stack underflow attack. There are twalkiof instructions, those that lead
to a modification of the stack pointesp) and those that pop elements from the stack
without decreasing the stack pointer at the enth@if processing. In the first case, if
the operation is performed on an empty stack, thekspointer will be located below
the stack bottom at the end of the instructionttneat. This kind of attack can be
done, for instance, with the instructiputstatic:

Stack of the methodl
putstatic_s

_— >
sp
XXXX Local vari abl es, sp XXXX
paraneters, frame of N
the nethodl
YYYY YYYY

Fig. 1: putstatic_s instruction on empty stack

Once the stack pointer has been corrupted, ackatt@an update any information
located between the stack pointer and the stadkirnot

sconst _0

—_

sp XXXX 0000

A 4

YYYY YYYY

Fig. 2 : Modification of the frame information thank soonst_0

In the second case, the stack pointer is not deerkat the end of the instruction
processing but during the processing. It is fotanse the case of the instruction
dup_x. The instructiordup_x takes two parameters coded on 1 byte:

* m, the high nibble, that is in the range 1 to 4.
* n, the low nibble, that is in the range 0 to m+4.

If n has a value different from 0, the top m worfsthe operand stack are
duplicated and the copied words are inserted n svol@ivn in the operand stack.
When n equals 0, the top m words are copied arakg@lan top of the stack [4].

The figure below show the impact of a dup_x 32 nempty stack (m is equal to 2).

dup_x 32
_— >

XXXX XXXX

YYYY YYYY

Fig. 3: dup_x instruction in order to read data located belogvgtack bottom. The two short at
the top of the stack (m equal to 2) will be dupiéchat the top of the stack (n equal to 0).

This instruction can also be misused in ordergdate information located below
the stack bottom. In this case, the attacker neegdsovide a “n” different from 0:

sp

AAAA dup_x 36

BBBB

XXXX AAAA
YYYY BBBB

Fig. 4: dup_x instruction in order to modify data located beltive stack bottom. The two
shorts on the top of the stack (m equal to 2) méllduplicated at 4 shorts down the stack top (n
equal to 4).

By using the underflow of the stack, an attackdl e able to manipulate the
following information (the order of this informatio depends on the platform
implementation):

* The local variables of the executed/caller method

e The parameters of the executed/caller method

» The frame information of the executed/caller methdus structure contains the
context of execution of the executed or of theerathethod.

In most implementation, the frame is located hefore the stack. An attacker will
then be able to modify the context of executiohisfmethod.

3 Underflow attack: practical attack path

An attacker can characterize each bytecode thaipuates the stack in order to
identify those that are not subject to securityifieation regarding underflow attacks.
Each instruction can be invoked on an empty stacktaen the platform behaviour is
analysed for each case. In this paper, we focusugailysis on the byte codep_x.

3.1 Underflow attack using dup_x

Characterisation of the underflow data

The first step of the attack aims reading the ttatated below the stack, and then
to analyse and characterize each byte readingdijhex instruction allows reading 8
bytes located below the stack bottom (m equaldodin equal to 0).

Depending on the platform implementation, theckiéa may localize

» the frame information of the current/caller method,

» the stack number of the current/caller method,

« the stack of caller method, the number of locailaldes of the current/caller
method,

» the local variable of the current/caller method.

The attacker needs to characterize the frame mfion in order to find the
position of the context.

The identification of information related to thétazker's method (stack, local
variable, system information) can be done by perfiog an underflow inside
different methods of the same applet. To be efiigithese methods need to have
different local variable numbers and different ktazes. Moreover, the parameters
used for each method need to be initialized wientdiable patterns:

public void | ocal _nethodl (short foo)
{
short varl
short var2
short var3
short var4

(short) OxBABL;
(short) OxDEDL1;
(short) OxFEF1;
I ocal _net hod2((byt e) OxDE, (byt e) OXED) ;

return;
}
public short Iocal _method2 (byte foo, byte bar)
{

short varl (short) OxBABZ2;
short var2 (short) OxDED2;
short var3 | ocal _met hod3();

return (short) OxDDFF;

public short local _nethod3 ()

//Performthe underfl ow attack
attrl = (short)0x3333;
return (short) 0xCDCD;

}

The following dump is obtained when an attackefgrens an underflow using the
instructiondup_x on an open Java Card platform:
0x01 Ox0C 0x00 0x01 OxDE 0OxD2 OxBA 0xB2

The state of the stack is the following:

> Stack of the
| ocal _nmet hod3

St ack bottomr — <
010C
0001
> Mermory dunp t hanks
DED2 to dup_x
BAB2
J
DEED

Fig. 5: State of the stack after an underflow attack udug x instruction

By analysing the dump obtained thanks to the uesivn dup_x on an open Java
Card platform, we can notice that thd &nd the % words correspond to the local
variables of théocal method2.

The identification of the context of executiontbé attacker’s applet can be done
by loading two underflow malicious applications ey different AIDs but identical
code. In this case, the two applications will hétve same local definition but differ
on the context ID. As an example, the followingadaan be read when an attacker
performs an underflow in an internal method ofdpglet:

» Underflow attack withdup_x 64 instruction on an applet APP1 with a context
APP1_context:
0x01 Ox0C 0x00 0x01 OxDE 0xD2 OxBA 0xB2

» Underflow attack withdup_x 64 instruction on an applet APP2 with a context
APP2_context:
0x01 0x18 0x00 0x01 OxDE 0xD2 OxBA 0xB2

The first two bytes are different for the two apgpiet is linked to the context of the
current executed applet. The second byte needs figdx to 0x00 in order to take the
JCRE context.

Exploitation of the underflow

Once the frame information has been localizedianghrticular the context of the
method of the attacker, tllip_x instruction can be used with n, different fromaer
in order to modify the execution context (as ddmmdiin the Figure 4). Indeed, this
instruction allows modifying 8 bytes located belthe stack (m equal to 4 and n
equal to 8).

The attacker can then update the context of his m&thod with the identifier of
the JCRE’s context (equal to 0x00) to gain acceshe¢ whole card content. Indeed,
there is no firewall restriction for the JCRE [S}daas long as JCRE’s context is
granted to a method then it can read and modifydefiyed object in memory.

The instructionshaload, saload or getfield can be used in order to read specific
address in the memory. Indeed, these instructiolhalow accessing different types
of objects in the memory: byte array, short arrag alass. An address forging
operation needs to be performed inside the aplitén order to be able to access to
the targeted address (push the targeted addresshenstack).

The attacker needs then to reverse the memorsaqmecess. To perform this
analysis, he can dump his application code and idatader to understand object
representation into the memory:

» package/applet/instance (AIDs, CAP components, ...)
* code

» standard objects (byte array, class, ...)

« sensitive objects (OwnerPIN, Keys, ...)

Once the characterisation has been done, thekatt&s able to identify all these
parts for other applications loaded onto the ca@ha instructiondastore, sastore and
putfield can then be used in order to modify all objecésina memory.

By targeting the code of a sensitive applicattwmwill be able to modify it. For
instance, he can replace, directly in memory, sieasthecks by NOPs in order to
avoid security/error detections. He can also mottig/code of the Owner PIN object
inside the memory by replacing the ciphered PINresgntation of the sensitive
application by the ciphered PIN representatiorhefdttacker (if the representation of
objects is not diversified by object).

3.2 ByteCode Verification

Off-Card Verifier detects classical underflow akadevertheless, an attacker has
several means to bypass this verification:

« Abuse the Shareable Interface mechanism as publisHé&]: we have extended
and adapted the attack described in [1] in orderéate an underflow.

« Abuse the Library mechanism

» Use combined attack as published in [6]

Abusing the Shareable Interface mechanism. The Shareable Interface mechanism
is used to share services between applicationsfiereht contexts. An Interface is
defined and contains all methods that will be sthare Server implements these
methods and builds the Shareable Interface Ob@gect instance of the class that
implement the Shareable Interface).

A Client uses these methods by obtaining the Slednterface Object thanks to
the methodyetAppletShareablel nterfaceObject(AID serverAlD, byte parameter).

The Shareable Interface mechanism can be abusexd&r to create a type
confusion attack as described in [1]. Indeed, thHenC is generated using one
definition of the interface 11 with a function Fathtake, for instance, a byte array as
parameter. The Server is generated using anotffi@itda of the interface 12 with a
function F that takes a short array as parametain@ the application validation, the
Client will be verified with 11 and the Server wilh, the verifications are done at two
different times. That's why no error will be detegtduring the validation. Regarding
application installations, only the interface I2lveie loaded onto the card. During the
Client applet execution, the type confusion is t@daand can be exploited by the
attacker (byte array read as a short array).

This principle can be applied to the underflovaeitt Indeed, the method definition
will be the following for the two interfaces:

* The Client is generated using the definition of ih&erface I1 (the Client
contains the underflow attack exploitation part):
/'] creation of the Underflow onto the card
public int myShareabl eMet hod_underfl owm short S1);

/1 Address forging onto the card

public byte[] myShareabl eMet hod_short ToByteArray();
public short[] nyShareabl eMet hod shortToShortArray()
public nyd ass nyShareabl eMet hod_short ToMyC ass() ;

e The Server is generated using another definitiatheinterface 12:
/] creation of the Underflow onto the card
public void nyShareabl eMet hod_underfl ow(short S1);

/1 Address forging onto the card

public short myShareabl eMet hod _short ToByteArray ();
public short myShareabl eMet hod_short ToShort Array ()
public short nyShareabl eMet hod_short Towyd ass ();

The functionmyShareableMethod underflow is called just before performing the
underflow attack as illustrated in the followingdeoextract:

sspush franme_1,;
sspush frane_2;
my Shar eabl eMet’ hod_under f | ow(); //returns INT in I1
dup_x 36; //Underflow of 4 byt es
[/ because it returns void indeed

The instructionsspush are used to push the new value of the frame onoihef
the stack ffame 1 and frame 2). Once the underflow is performed, thiep x
instruction allows assigning the new frame inforigmat

Then the functions myShareableMethod _shortToByteArray,
myShareableMethod _shortToShortArray and myShareableMethod shortToMyClass
are used to create address forging. The aim isdd a short as a byte array, a short
array or a class object. The short used in orddorge address is the one given as
parameter ofnyShareableMethod_underflow.

During the off-card verification of the Client \withe Interface 11, no error will be
detected. Nevertheless, during on-card executidim the Interface 12:

1. No int will be pushed onto the stack by the method
myShareableMethod _underflow. The underflow will be created.

2. The underflow is exploited by the attacker: he lideato modify the current
context by the JCRE context that is equal to 0.

3. A short will be returned by myShareableMethod shortToByteArray,
myShareableMethod_shortToShortArray and
myShareableMethod_shortToMyClass and will be assigned as a reference to
byte array, short array and class object. The addsdl be forged. The attacker
will be able to access to the targeted address.

Abusing the Libray mechanism. A Java Card platform can contain some libraries
(applications that are not applets). A library sver instantiated; it contains only
methods that can be used by other application thad& the card.

As for the Shareable Interface mechanism, an latacan abuse the Library
mechanism. The concept of the attack path is theesindeed, an attacker develops a
library in two versions:

e Library L1 v1.0, this version of the library willebused for the verification of
the application:
public int myShareabl eMet hod()

As the methodnyShareableMethod returns an int, the underflow attack is not
detected by the tool.

e Library L1 v1.1, this version of the library wilebloaded onto the card:
public void nyShareabl eMet hod()

During the execution of the malicious applicatiothe method
myShareableMethod that return void is called. The underflow is aatad and
can be exploited by the attacker.

Creating an underflow with combined attack. A combined attack [6] is a
combination between a logical attack and a physittatk.

A combined attack can be used to create a mutapptication. A mutant
application [7] is an application that is well-foech and that becomes malicious
during its execution by injecting a fault usingasdr or an electromagnetic pulse in
order to modify transiently a specific bytecode @i®n. Indeed, an attacker

develops a well formed applet (successfully vedifiyy an Off-Card Verifier) that is
designed such that the modification of one bytealjyOP allows him to execute a
malicious code, in our case the underflow attadie @pplet of the attacker is loaded
onto the card. The attacker then modifies the megation of specific instruction
during the code execution using fault injection.eTinstruction is interpreted as a
NOP and consequently, the instruction’s paramesees not processed and are
interpreted as new instructions.

A combined attack can also be performed in ordevbid on-card security checks
or to bypass on-card countermeasures. An attackeruse it in order to bypass
verification made during application loading. Inde¢he application of the attacker
uses a library L2 that declares the following médthopublic int
myShareableMethod(). The version of the library is 2.0. The applicatiof the
attacker is well-formed and will be verified withiess. Nevertheless, the platform
contains a library L1 with the following methoplublic void myShareableMethod().
The version of the library onto the card is 1.0.ribg the application loading, the
platform will ensure that each imported packagethassame major version than the
one loaded onto the card. An attacker can perfofaul injection in order to bypass
this specific security check. In this case, theliappon will be loaded successfully
and the underflow can be exploited during the @atibn execution.

4 Countermeasures

The underflow attack can be covered by organisationeasures or by technical
countermeasures.

4.1 Organisational measures

The developer can add specific mandatory requirésnanthe guidance. Indeed,
requirements related to versioning and importeck@ges can be sufficient to cover
the purely software attack abusing the Sharealtégfate or Library mechanism. In
such case, the attack will be detected during tiiGation verification process by
the Verification Authority and the application wile rejected.

Nevertheless, this countermeasure does not covebioed attacks. Only technical
measures can be used to cover that kind of attacks.

4.2 Technical counter measures

The developer can implement dedicated countermeasunto the Java Card Virtual
Machine in order to defend against the underflotackt Indeed, he needs to add
security checks upon the processing of each intstru¢hat pop elements from the
stack in order to ensure that the stack pointgalisl, during and after the instruction
processing.

Nevertheless, an attacker could perform a combiaddck to bypass this
countermeasure: the attacker develops his malicagmication, loads it onto the
card, and finally performs a fault injection attacion the execution of the
application in order to avoid the underflow countersure. Therefore, in order to
implement an efficient underflow countermeasure, tbde must also be protected
against faults injection attacks.

5 Conclusion

Open Java Card platforms, enabling post-issuanpkelpading, induce a new type
of attackers having privileges. These attackersiateisted application developers or
application loaders that are able to choose théicapipn that will be loaded onto the
card. In such context, the platform with its guidameeds to be protected against
malicious applications.

We have presented, in this paper, an underfloachktthat exploits thelup x
instruction in order to read and modify the curreohntext of execution of the
attacker’s application. Once this modification @nd, the attacker is able to acquire
the context of the JCRE and so to read and modifyobcontext data. This attack
can be developed in such a way that the malicippsication will bypass the concept
of Byte Code Verifier. Indeed, the validation ofpéipation is done in a specific time
and the validation of the library or of the Shaleaervice is done at another time.
This underflow attack can also be exploited througher instructions that pop
elements from the stack. This attack has been ieeft with success on several Java
Card platforms.

Several solutions exist to protect the platfornaiasgt this kind of attacks, either
organisational - if the guidance includes speaifiquirements -, or technical - if the
platform implements dedicated security checks upstructions processing -.

Finally, this paper shows that the current concé@yte Code Verification is not
sufficient to prevent all kinds of malicious applibns. During a platform
evaluation, the overall malicious application dttgzaths need to be taken into
account. A specific care is to be applied on thfptm guidance in order to ensure
that it will contain all the necessary requirementsover logical attack path.

References

1. Mostowski, W., Poll, E.: Malicious code on jaward smartcards: Attacks and
countermeasures. Smart Card Research and Advancditatipm Conference (CARDIS
2008), pp. 1-16 (2008)

2. Lanet, J.L., Faugeron, E., Dessiatnikoff, AMA&N: Un cheval de Troie dans une carte a
Puce. Computer & Electronics Security Applicationsi@kz-vous (CESAR 2008), pp. 198
(2008)

3. Lanet, J.L., lguchi-Cartigny, J., Evaluation tejéction de code malicieux dans une Java
Card SSTIC 09 (2009)

4. Java Card Virtual Machine Specification - Javed@®atform, Version 2.2.2 (March 2006)

Java Card Runtime Environement specificatiorva J2ard Platform, Version 2.2.2 (March
2006)

Guillaume Barbu, Hugues Thiebeauld, Vincent @uer Attacks on Java Card 3.0
Combining Fault and Logical Attacks. Smart Card Redeand Advanced Application
Conference (CARDIS 2010), (2010).

Eric Vetillard, Anthony Ferrari: Combined Attacknd Countermeasures. Smart Card
Research and Advanced Application Conference (CARIDIR), pp. 133-147 (2010).
Guillaume Bouffard, Julien lguchi-Cartigny, Jdaniis Lanet: Combined Software and
Hardware Attacks on Java Card Control Flow. Smart CResearch and Advanced
Application Conference (CARDIS 2011), pp. 283-2961(2).

Karsten Nohl: Rooting SIM cards. BlackHat 2013.

. Pierre Girard thesis: Contribution a la sécudés cartes a puce et de leur utilisation,

University of Limoges (2011).

