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Abstract. Koblitz curves allow very efficient scalar multiplications be-
cause point doublings can be traded for cheap Frobenius endomorphisms
by representing the scalar as a τ -adic expansion. Typically elliptic curve
cryptosystems, such as ECDSA, also require the scalar as an integer.
This results in a need for conversions between integers and the τ -adic
domain, which are costly and prevent from using Koblitz curves on very
constrained devices, such as RFID tags or wireless sensors. In this pa-
per, we provide a solution to this problem by showing how complete
cryptographic processes, such as ECDSA signing, can be completed in
the τ -adic domain with very few resources, consequently outsourcing the
expensive conversions to a more powerful party. We also provide small
circuitries that require about 76 gate equivalents on 0.13µm CMOS and
that are applicable for all Koblitz curves.

1 Introduction

Because elliptic curve cryptography (ECC) [12, 18] offers high security levels
with short key lengths and relatively low amounts of computation, it is one
of the most feasible alternatives for implementing public-key cryptography on
constrained devices where resources (e.g., circuit area, power, and energy) are
extremely limited. Constrained devices that require lightweight implementations
of public-key cryptography are, e.g., wireless sensor network nodes, RFID tags,
and smart cards. Several researchers have proposed lightweight implementations
which aim to minimize area, power, and/or energy of computing elliptic curve
scalar multiplications [2, 3, 8, 14, 16], which are the fundamental operations re-
quired by every elliptic curve cryptosystem.

Koblitz curves [13] are a special class of elliptic curves offering very efficient
elliptic curve operations when scalars used in scalar multiplications are given as
τ -adic expansions. It is commonly known that Koblitz curves allow extremely
fast scalar multiplications in both software [25] and hardware [9]. A recent pa-
per [2] showed that they can be implemented also with very few resources (es-
pecially, in terms of energy) if the scalar is already in the τ -adic domain. Many
cryptosystems require both the integer and τ -adic representations of the scalar
which results in a need for conversions between the domains. All known meth-
ods for computing these conversions in hardware [1, 5, 6, 10, 23] require a lot of



resources making them unfeasible for constrained devices. In most cases, this
prevents from using Koblitz curves although they would otherwise result in very
efficient lightweight implementations. A workaround to this problem is to design
a protocol that operates directly in the τ -adic domain [4]. However, this approach
has several drawbacks because it prevents from using standardized algorithms
and protocols, which, consequently, makes the design work more laborious and
may even lead to cryptographic weaknesses in the worst case.

In this paper, we show how the computationally weaker party of a cryp-
tosystem can delegate the conversions to the more powerful party by computing
all operations directly in the τ -adic domain with an extremely small circuitry.
Our approach can be straightforwardly used for many existing Koblitz curve
cryptosystems that require scalar multiplications on Koblitz curves and modu-
lar arithmetic with the scalar (e.g., ECDSA) without affecting the cryptographic
strength of the cryptosystem. We also provide small circuitries that enable effi-
cient lightweight implementations of the approach. Consequently, we show how
Koblitz curves can be used also in lightweight implementations.

This paper is structured as follows. Section 2 surveys the preliminaries of
ECC and Koblitz curves. Section 3 discusses the existing solutions for using
Koblitz curves by reviewing the related work on conversions between integers
and the τ -adic domain and presents the outline of the new idea. An algorithm
for computing additions in the τ -adic domain is presented and analyzed in Sec-
tion 4. Section 5 presents algorithms for computing other arithmetic operations
using the algorithm from Section 4. Section 6 introduces an architecture for a
circuitry implementing the algorithms from Sections 4 and 5. Section 7 presents
implementation results on 0.13µm CMOS and compares them to converters from
the literature. Section 8 presents a case study of how the findings of this paper
could be used in computing ECDSA signatures in lightweight implementations.
The paper ends with conclusions in Section 9.

2 Elliptic Curve Cryptography and Koblitz Curves

In the mid-1980s, Miller [18] and Koblitz [12] showed how public-key cryptog-
raphy can be based on the difficulty of computing the discrete logarithm in an
additive Abelian group E formed by points on an elliptic curve. Let k ∈ Z+ and
P ∈ E . The fundamental operation in ECC is the scalar multiplication which is
given by:

kP = P + P + . . .+ P︸ ︷︷ ︸
k times

. (1)

The operation Q + R, where Q,R ∈ E , is called point addition if Q 6= ±R and
point doubling if Q = R. Scalar multiplication can be computed with a series of
point doublings and point additions, e.g., by using the well-known double-and-
add algorithm. Elliptic curves over finite fields of characteristic two GF (2m) are
often preferred in implementing ECC because they allow efficient implementa-
tions, especially, in hardware. These curves are commonly called binary curves.



Koblitz curves [13] are a subclass of binary curves defined by the equation:

y2 + xy = x3 + ax2 + 1 (2)

where a ∈ {0, 1} and x, y ∈ GF (2m). Let K denote the Abelian group of points
(x, y) that satisfy (2) together with O which is a special point that acts as
the zero element of the group. Koblitz curves have the property that if a point
P = (x, y) ∈ K, then also its Frobenius endomorphism F (P) = (x2, y2) ∈ K.
This allows devising efficient scalar multiplication algorithms where Frobenius
endomorphisms are computed instead of point doublings. It can be shown that
F (F (P)) − µF (P) + 2P = 0, where µ = (−1)1−a, holds for all P ∈ K [13].
Consequently, F (P) can be seen as a multiplication by the complex number τ
that satisfies τ2 − µτ + 2 = 0, which gives τ = (µ+

√
−7)/2.

If the scalar k is given using the base τ as a τ -adic expansionK =
∑
Kiτ

i, the
scalar multiplication KP can be computed with a Frobenius-and-add algorithm,
where Frobenius endomorphisms are computed for each Ki and point additions
(or subtractions) are computed for Ki 6= 0. This is similar to the double-and-
add algorithm except that computationally expensive point doublings are re-
placed with cheap Frobenius endomorphisms. Hence, if a τ -adic expansion can
be efficiently found, then Koblitz curves offer considerably more efficient scalar
multiplications than general binary curves.

We use the following notation. Lower-case letters a, b, c, . . . denote integer
values and upper-case letters A,B,C, . . . denote τ -adic expansions. If both lower-
case and upper-case version of the same letter are used in the same context, then
the values are related; to state this explicitly, we denote A $ a. Bold-faced upper
case letters P,Q, . . . denote points on elliptic curves.

3 Related Work and Outline of the Idea

Lightweight applications are typically asymmetric in the sense that one of the
communicating parties is strictly limited in resources, whereas the other is not.
As an example, we consider an application where a wireless tag communicates
with a server over a radio channel. The tag is limited in computational resources,
power, and energy but the server has plenty of resources for computations. The
tag implements an elliptic curve cryptosystem which requires both elliptic curve
operations and modular arithmetic with integers (e.g., it signs messages with
ECDSA [21]). The tag uses Koblitz curves for efficient scalar multiplication re-
sulting in a need for obtaining both τ -adic expansions and their integer equiva-
lents. In the following, we survey two existing options for implementing the above
scheme as well as a new idea which allows delegating the expensive conversions
from the tag to the powerful server.

3.1 Survey of the Existing Options

The first option, which is depicted in Figure 1(a), is to generate k as a ran-
dom integer and convert it into a τ -adic expansion K for scalar multiplication.
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Fig. 1. Three options for using Koblitz curves on a wireless tag. Thin black arrows
and thick gray arrows represent integer and τ -adic values, respectively. (a) the random
number generator (RNG) generates scalar k as an integer which is converted to a τ -adic
expansion K in order to use it in the elliptic curve scalar multiplication (ECSM) but
k can be used as it is in the arithmetic part; (b) the RNG generates a random τ -adic
expansion K which is used as it is in the ECSM but it is converted into an integer k
in order to use it in the arithmetic part; and (c) the RNG generates a random τ -adic
expansion K but the arithmetic part is also performed (at least partly) in the τ -adic
domain. The computationally expensive conversion is delegated to the server.

The arithmetic part can be computed using the original integer k. The first
method for conversion was given by Koblitz [13]. It has the drawback that the
length of the τ -adic expansion is twice the length of the original scalar, con-
sequently, reducing the efficiency of the scalar multiplication. Later, Meier and
Staffelbach [17] and Solinas [24] showed that expansions of approximately the
same length as the original scalar can be found. Solinas [24] also showed how
to find τ -adic nonadjacent form (τNAF) and windowed NAF (w-τNAF) repre-
sentations for the scalar k. These algorithms require, e.g., operations with large



rational numbers, which render them very inefficient for hardware implementa-
tions. The first hardware oriented conversion algorithm and implementation was
presented by Järvinen et al. [10]. Brumley and Järvinen [6] later presented an
algorithm requiring only integer additions, which resulted in the most compact
hardware converter to date; however, even it is too large for very constrained
devices mostly because it uses long adders and a high number of registers. Their
work was extended by Adikari et al. [1] and Sinha Roy et al. [23] who focused
on improving speed at the expense of resource requirements, which makes them
even less suitable for constrained devices.

The second option, which is shown in Figure 1(b), is to generate the scalar as
a random τ -adic expansion K and to find its integer equivalent for the arithmetic
part. Generating random τ -adic expansions was first mentioned (and credited
to Hendrik Lenstra) by Koblitz [13] but he did not provide a method for finding
the integer equivalent of the scalar. The first method for retrieving the integer
equivalent k was proposed by Lange in [15]. Her method requires several multi-
plications with long operands. More efficient methods were later introduced by
Brumley and Järvinen in [5, 6]. The resource requirements of their methods are
smaller than computing conversions to the other direction [6] but even they are
too expensive for lightweight implementations.

3.2 Outline of the New Idea

In this paper, we propose a third option which, to the best of our knowledge, is
not previously available in the literature. This option is shown in Figure 1(c).
Similarly to the second option, the tag generates a random τ -adic expansion
K and uses it for scalar multiplication. However, the tag does not compute the
integer equivalent k but, instead, it uses K directly and all operations which
depend on it are computed in the τ -adic domain. The results of these operations
(τ -adic expansions) are transmitted over the radio channel to the server, which
first converts the results to integers and then proceeds with normal server-side
operations. Only the operations which depend on the scalar need to be computed
in the τ -adic domain and, hence, it may be possible to compute other opera-
tions (and transmit their results) using integers. Clearly, this option improves
efficiency of the tag only if operations in the τ -adic domain are cheap. In the fol-
lowing, we show that they can, indeed, be implemented with very few resources.
From security perspective, the third option is equivalent with the second option
discussed in Section 3.1 (c.f. [15]) because transmitting τ -adic expansions instead
of their integer equivalents does not reveal any additional information about the
secret scalars.

The new idea has similarities with [4], which presented a modified version of
the Girault-Poupard-Stern identification scheme that handles only τ -adic expan-
sions. Both [4] and the new idea use arithmetic in the τ -adic domain. We adapt
and further develop the addition algorithm from [4]. The new idea allows dele-
gating conversions to the more powerful party for arbitrary cryptosystems that
require scalar multiplications on Koblitz curves and modular integer arithmetic
with the scalar, whereas [4] presented a single identification scheme built around



τ -adic expansions only. For instance, it is unclear how to build a digital signa-
ture scheme that uses only τ -adic expansions because the ideas of [4] cannot be
directly generalized to other schemes. We also provide the first hardware realiza-
tions of algorithms required to implement the new idea. These implementations
may have importance also for implementing the scheme from [4].

4 Addition in the τ -adic Domain

The cornerstone of the idea discussed in Section 3.2 is to devise an efficient
algorithm for adding two τ -adic expansions. In this section, we show how to
construct such an algorithm. Our addition algorithm is close to the algorithm
from [4] but we improve its efficiency and provide an analysis of the algorithm.
Other arithmetic operations can be built upon the addition algorithm and they
are discussed later in Section 5.

Let A and B be the τ -adic expansions of two positive integers a and b such
that

A =
n−1∑
i=0

Aiτ
i and B =

n−1∑
i=0

Biτ
i (3)

where Ai ∈ {0, 1} and Bi ∈ {−1, 0, 1} so that An−1 = 1 and/or Bn−1 = ±1.
Signed bits are allowed for B for two reasons: (a) Koblitz curve cryptosystems
are typically implemented by using the τNAF) representation [24] or some other
representation with signed bits (e.g., [22, 27]) and (b) this allows computing
subtractions with the same algorithm.

Adding the two expansions gives the following expansion:

C = A+B =
n−1∑
i=0

Ciτ
i (4)

where Ci = Ai + Bi ∈ {−1, 0, 1, 2}. This expansion is correct in the sense that
C $ a + b but it has several drawbacks because the set of digits has grown.
Hence, the expansion must be processed in order to obtain a binary-valued τ -
adic expansion. Instead of allowing C to have signed binary values as in [4], we
limit the set of digits to unsigned binary values (i.e., Ci ∈ {0, 1}) in order to
decrease the storage requirements for C. This does not imply restrictions for the
use of the addition algorithm in our case as long as Bi are allowed to have signed
binary values because we do not use the results of additions for computing scalar
multiplications.

The binary-valued expansion C can be found analogously to normal addition
of binary numbers by using a carry [4]. The main difference is that the carry
is a τ -adic number t. The unsigned binary valued Ci is obtained by adding the
coefficients Ai and Bi with the carry from the previous iteration and by reducing
this value modulo 2; i.e., by taking the least significant bit (lsb). Every τ -adic
number can be represented as t0 + t1τ where t0, t1 ∈ Z [24] and, hence, also
the carry t can be represented with two integer coefficients as t = t0 + t1τ .



Input: τ -adic expansions A =
Pn−1

i=0 Aiτ
i $ a and B =

Pn−1
i=0 Biτ

i $ b

Output: C =
Pn′−1

i=0 Ciτ
i, where Ci ∈ {0, 1}, such that C $ a+ b

1 (t0, t1)← (0, 0); i← 0
2 while i < n or (t0, t1) 6= (0, 0) do
3 r ← Ai +Bi + t0
4 Ci ← r mod 2
5 (t0, t1)← (t1 + µ br/2c ,−br/2c)
6 i← i+ 1

7 return C

Algorithm 1: Addition in the τ -adic domain

Updating the carry for the next iteration requires a division by τ . As shown by
Solinas [24], t0 + t1τ is divisible by τ if and only if t0 is even. Subtracting Ci

(rounding towards the nearest smaller integer) ensures this and, hence, we get:

((t0 − Ci) + t1τ)/τ = t1 + µ

⌊
t0
2

⌋
−
⌊
t0
2

⌋
τ . (5)

We continue the above process for all n bits of the operands and as long as
(t0, t1) 6= (0, 0). The resulting algorithm is shown in Algorithm 1.

Remark 1. Computing subtractions with Algorithm 1 is straightforward: A −
B = A+(−B) = A+

∑n−1
i=0 (−Bi)τ i. I.e., we flip the signs of Bi and compute an

addition with Algorithm 1. Alternatively, we revise Algorithm 1 so that Line 3
is replaced with r ← Ai −Bi + t0.

4.1 Analysis of Algorithm 1

There are certain aspects that must be analyzed before Algorithm 1 is ready for
efficient hardware implementation. The most crucial one is the sizes of the carry
values t0 and t1 because efficient hardware implementation is impossible without
knowing the number of flip-flops required for the carry. The ending condition of
Algorithm 1 also implies that the latency of an addition depends on the values
of the operands. This might open vulnerabilities against timing attacks. The
following analysis sheds light on these aspects and provides efficient solutions
for them.

In order to analyze Algorithm 1, we model it as a finite state machine (FSM)
so that the carry (t0, t1) represents the state. Algorithm 1 can find unsigned
binary τ -adic expansions with any Ai, Bi ∈ Z but, in this analysis and in the
following propositions, we limit them so that Ai ∈ {0, 1} and Bi ∈ {−1, 0, 1}, as
described above. The FSM is constructed starting from the state (t0, t1) = (0, 0)
by analyzing all transitions with all possible inputs Ai +Bi ∈ {−1, 0, 1, 2}. E.g.,
when µ = 1, we find out that the possible next states from the initial state (0, 0)
are (0, 0) with inputs 0 and 1 (the corresponding outputs are then 0 and 1),
(−1, 1) with input −1 (output 1), and (1,−1) with input 2 (output 0). Next, we



analyze (−1, 1) or (1,−1), and so on. The process is continued as long as there
are states that have not been analyzed. The resulting FSM for µ = 1 is depicted
in Figure 2 and it contains 21 states. We draw two major conclusions from this
FSM (and the corresponding one for µ = −1).
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Fig. 2. The FSM for Algorithm 1, when µ = 1, with inputs Ai ∈ {0, 1} and
Bi ∈ {−1, 0, 1}. The FSM is plotted on the complex plane so that each state is po-
sitioned based on its complex value t = t0 + t1τ . The states are labeled with (t0, t1).
State transitions are marked with in / out where in are the input values for which the
transition is taken and out are the corresponding outputs.



Proposition 1. For both µ = ±1, the carry (t0, t1) of Algorithm 1 can be rep-
resented with 6 bits so that both t0 and t1 require 3 bits.

Proof. The FSM of Figure 2 directly shows that −3 ≤ t0 ≤ 3 and −2 ≤ t1 ≤ 2.
There are 7 distinct values for t0 and 5 for t1 and, hence, they can be represented
with 3 bits, e.g., by using two’s complement representation. The FSM for µ = −1
can be constructed similarly and it also contains 21 states so that −3 ≤ t0 ≤ 3
and −2 ≤ t1 ≤ 2. Hence, t0 and t1 both require 3 bits for µ = ±1. Consequently,
the carry requires 6 bits. ut

Remark 2. The FSM of Figure 2 includes 21 states. Hence, the states could be
represented with only 5 bits. Unfortunately, if the algorithm is implemented
directly as an FSM, the growth in the size of the combinational part outweighs
the benefits gained from the lower number of flip-flops.

Proposition 2. Let n be the larger of the lengths of A and B; i.e., An−1 = 1
and/or Bn−1 = ±1. Then, Algorithm 1 returns C with a length n′ that satisfies

n′ ≤ n+ λ (6)

where λ = 7 for both µ = ±1.

Proof. After all n bits of A and B have been processed, the FSM can be in any
of the 21 states. Hence, the constant λ is given by the longest path from any
state to the state (0, 0) when the input is fixed to zero; i.e., Ai = Bi = 0. The
FSM of Figure 2 shows that the longest path starts from the state (0, 2) and goes
through the following states (2, 0), (1,−1), (0,−1), (−1, 0), (−1, 1), and (0, 1)
to (0, 0) and outputs (0, 0, 1, 1, 1, 0, 1). Thus, λ = 7 for µ = 1. It can be shown
similarly that λ = 7 also for µ = −1. ut

5 Other Operations in the τ -adic Domain

In this section, we describe algorithms for other arithmetic operations in the
τ -adic domain, which are required in order to implement the idea of Section 3.2.
The algorithms are based on using the addition algorithm given in Algorithm 1.

5.1 Folding

The length of an arbitrarily long τ -adic expansion can be reduced to about m bits
without changing its integer equivalent modulo q, where q is the order of the base
point of the scalar multiplication. The integer equivalent of a τ -adic expansion
A =

∑n−1
i=0 Aiτ

i can be retrieved by computing the sum a =
∑n−1

i=0 Ais
i (mod q)

where s, the integer equivalent of τ , is a per-curve constant integer [15]. Because
sm ≡ 1 (mod q),

a =
n−1∑
i=0

Ais
i ≡

bn/mc∑
j=0

m−1∑
i=0

Ajm+is
i (mod q), (7)



Input: τ -adic expansion A =
Pn−1

i=0 Aiτ
i $ a, m, and ` ≥ m

Output: B =
Pn′−1

i=0 Biτ
i $ b = a and n′ ≤ `

1 B ← A(0)

2 for j = 1 to bn/mc do

3 B ← B +A(j) /* Algorithm 1 */

4 while n′ > ` do

5 B ← B(0) +B(1) + . . .+B(bn′/mc) /* Optional, Algorithm 1 */

6 return B

Algorithm 2: Folding

where Ai = 0 for i ≥ n. As a result of (7), an expansion can be compressed to
approximately m bits by “folding” the expansion; i.e., folding is analogous to
modular reduction. Let A(j) =

∑m−1
i=0 Ajm+iτ

i, the j-th m-bit block of A. Then,
an approximately m-bit τ -adic expansion B having the same integer equivalent
with A can be obtained by computing B = A(0)+A(1)+. . .+A(bn/mc) with bn/mc
applications of Algorithm 1. Because of the carry structure of Algorithm 1, the
length of the expansion may still exceed m bits. Additional foldings can be
computed in the end in order to trim the length of B below a predefined bound
` ≥ m. An algorithm for folding (including the optional trimming in the end) is
given in Algorithm 2. In most practical cases, the optional trimming requires at
most one addition: B(0) +B(1).

5.2 Multiplication

Multiplication of two τ -adic expansions A and B is given as follows:

C = A×B =
n−1∑
i=0

Aiτ
iB . (8)

An algorithm for multiplication in the τ -adic domain can be devised by using
a variation of the binary method. An addition is computed with Algorithm 1
if Ai = 1 and a multiplication by τ is performed for all Ai by shifting the bit
vector. Hence, multiplication requires n− 1 shifts and ρ(A)− 1 additions, where
ρ(A) is the Hamming weight of A. A bit-serial most significant bit (msb) first
multiplication algorithm is presented in Algorithm 3. A similar multiplication
algorithm was used also in [4].

It is also possible to use the binary method for computing multiplications
where the other operand, say a, is an integer. Algorithm 4 presents a bit-serial
msb first algorithm for computing C = a × B such that C $ a × b. It requires
n+ ρ(A)− 2 additions with Algorithm 1.

Remark 3. Algorithm 4 also serves as an algorithm for converting integers to
the τ -adic domain. An integer a can be converted by computing a × 1 with
Algorithm 4. The algorithm returns C = A, the unsigned binary τ -adic expansion



Input: τ -adic expansions A = τn−1 +
Pn−2

i=0 Aiτ
i $ a, where Ai ∈ {0, 1}, and

B $ b, where Bi ∈ {−1, 0, 1}
Output: C = A×B such that C $ a× b

1 C ← B
2 for i = n− 2 to 0 do
3 C ← τC /* Shift */

4 if Ai = 1 then
5 C ← C +B /* Algorithm 1 */

6 return C

Algorithm 3: Multiplication in the τ -adic domain

Input: Integer a = 2blog2 ac +
Pblog2 ac−1

i=0 ai2
i, where ai ∈ {0, 1}, and a τ -adic

expansion B $ b, where Bi ∈ {−1, 0, 1}
Output: C such that C $ a× b

1 C ← B
2 for i = blog2 ac − 1 to 0 do
3 C ← C + C /* Algorithm 1 */

4 if ai = 1 then
5 C ← C +B /* Algorithm 1 */

6 return C

Algorithm 4: Multiplication by an integer in the τ -adic domain

of a. This could also be used for converting k but, in that case, K would have
ρ(K) ≈ n/2, whereas representing K in τNAF gives ρ(K) ≈ n/3 and results in
more efficient scalar multiplications.

Remark 4. Different versions of the binary method can be straightforwardly used
for devising an algorithm for multiplications of τ -adic expansions (also when the
other operand is an integer). Especially, using Montgomery’s ladder [19] would
give an algorithm with a constant sequence of operations (shifts and additions),
which would provide resistance against side-channel analysis. The scalar k is
typically a nonce and the adversary is limited to a single side-channel trace.
Thus, constant pattern of operations offers sufficient protection against most
attacks.

5.3 Multiplicative Inverse

The multiplicative inverse modulo q, a−1, for an integer a can be found via
Fermat’s Little Theorem by computing the following exponentiation:

a−1 = aq−2 (mod q) . (9)

This exponentiation gives a straightforward way to compute inversions also with
τ -adic expansions. Let q′ = q−2. Given a τ -adic expansion A, a τ -adic expansion



Input: τ -adic expansion A of integer a and q′ = q − 2
Output: B such that b ≡ a−1 (mod q)

1 B ← A
2 for i = blog2 q

′c − 1 to 0 do
3 B ← B ×B /* Algorithm 3 */

4 if q′i = 1 then
5 B ← B ×A /* Algorithm 3 */

6 return B

Algorithm 5: Inversion modulo q in the τ -adic domain

A−1 such that A×A−1 $ a× a−1 ≡ 1 (mod q) can be found by computing:

A−1 = Aq′
=
blog2 q′c∏

i=0

Aq′
i2

i

. (10)

Algorithm 5 shows an algorithm for computing (10) by using Algorithm 3.

6 Architecture

The objective of this work was to provide an efficient circuitry with small resource
requirements that could be used for computing τ -adic arithmetic in lightweight
implementations. Figure 3 presents an architecture that implements Algorithm 1
for µ = 1. Because Bi ∈ {−1, 0, 1}, it can be used for K given using signed-bit
representations (e.g., [22, 24, 27]). Because t0 ∈ [−3, 3] and Ai + Bi ∈ [−1, 2],
r ∈ [−4, 5] and we need 4 bits to represent it. The division br/2c can be trivially
performed by dropping off the lsb of r, which is used directly as Ci. The carry
values t0 and t1 are represented as 3-bit two’s complement numbers (see Propo-
sition 1). Hence, −br/2c is obtained by flipping the bits and adding one, which
results in the circuitry shown on the right in Figure 3. The while loop can be
implemented as a for loop from 0 to n + λ − 1 (see Proposition 2). The rest of
Algorithm 1 and the other algorithms (e.g., Algorithm 3) can be implemented
with a simple control logic and shift registers for the operands. Algorithm 1 and
the architecture of Figure 3 are independent of the field size m and, hence, the
same architecture can be used for all Koblitz curves with µ = 1.

A circuitry for µ = −1 can be devised similarly but we omit the description
because of space restrictions. We merely state that it is almost similar: the only
difference is that the adders updating t0 (on the left in Figure 3) use the outputs
of the negation part that computes −br/2c (on the right in Figure 3) instead
of taking br/2c directly. Hence, the area requirements should, in theory, remain
the same but the critical path becomes longer by one NOT and two XORs (in
the half adders).

The circuitry of Figure 3 computes additions in the τ -adic domain with a
constant latency of n + λ clock cycles. Assuming that n ≈ m, we get that an
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Fig. 3. Architecture for µ = 1. The circuit consists of 4 half adders (HA), 3 full adders
(FA), 2 half adders without carry logic (HA’), 2 full adders without carry logic (FA’),
3 NOTs, and 6 flip-flops. All wires are single bit wires.

addition requires m+7 clock cycles; this gives 170 clock cycles for the NIST curve
K-163 from [21]. If multiplication by τ (shift) takes one clock cycle, Algorithm 3
requires approximately m(m + λ + 2)/2 clock cycles and Algorithm 4 requires
approximately 3m(m+λ)/2 clock cycles; this gives roughly 14000 or 41600 clock
cycles, respectively, for NIST K-163. These latencies are small compared to the
latency of scalar multiplication [2, 3, 8, 14, 16]. It is also typical for lightweight
implementations that area, power, and energy consumption are more important
than latency.

7 Results and Comparison

We described the circuitry of Figure 3 and the corresponding one for µ = −1 in
VHDL and simulated them with ModelSim SE 6.6d. We used Synopsys Design
Compiler D-2010.03-SP4 with Faraday FSC0L standard cell libraries for synthe-
sizing them for UMC 0.13µm CMOS with voltage of 1.2 V. When synthesized
using the ‘compile ultra’ process without additional constraints, the areas of the
circuitries were 75.25 and 76.25 gate equivalents (GE) for µ = 1 and µ = −1,
respectively.

The converter architectures available in the literature have been implemented
on field-programmable gate arrays (FPGA) and, consequently, their area and
performance characteristics are available only for FPGAs. Hence, comparing the
circuitries presented above to the state-of-the-art converters is not straightfor-
ward. In order to perform a fair comparison, we estimate the GE counts of



Table 1. Comparison to the state-of-the-art converters for NIST K-163 (µ = 1)

Work Technology Area / Notes GE

[6], integer-to-τNAF FPGA, Stratix II S60C4 948 ALUTs, 683 FFs >7200
[6], τ -adic-to-integer FPGA, Stratix II S60C4 850 ALUTs, 491 FFs >3600

This work, µ = 1 ASIC, 0.13µm CMOS Fig. 3 75.25
This work, µ = 1 ASIC, 0.13µm CMOS Fig. 3, 340 FFs ∼2000

the converters from [6], which are the most compact converters available in the
literature. These estimates in the case of NIST K-163 are collected in Table 1.

The integer to τNAF converter [6] includes twom-bit and fourm/2-bit adders
and registers as well as several multiplexers and comparators. A full adder and
a flip-flop both require 5.5 GE on 0.13µm CMOS and, hence, we can estimate
that only the adders and registers occupy an area of about 7200 GE if m = 163.
The area of the τ -adic expansion to integer converter [6] that requires two m-
bit adders, two m-bit registers, multiplexers, and comparators can be estimated
similarly. The adders and registers alone give an area estimate of about 3600 GE
if m = 163.

Algorithms 3–4 require two (m + λ)-bit registers. We anticipate that in
most implementations these registers can be shared with the circuitry comput-
ing scalar multiplications. In that case, the overhead of the circuitries is only
about one hundred GEs (including the control logic), which is negligible com-
pared to the converters. If none of these registers can be shared with the scalar
multiplier, then the circuitry for NIST K-163 including registers has an area
of approximately 2000 GE. This area is still only about half of the area of the
smallest converter available today.

8 Case Study: ECDSA

In this section, we present a case study of how the new scheme could be used for
ECDSA. The tag computes an ECDSA signature for a message M and sends
it to a more powerful server for verification. The signature (r, s) is computed as
follows [21]:

k ∈R [1, q − 1] (11)
r = [kP]x (12)
e = H(M) (13)

s = k−1(e+ dr) mod q (14)

where d is the signer’s private key, [kP]x denotes the x-coordinate of the result
point of the scalar multiplication kP, and H(M) is the hash value of M (e.g.,
SHA-256).

Equation (12) can be efficiently computed using Koblitz curves if k is given
as a τ -adic expansion; i.e., we compute r = [KP]x. We can use the τNAF



representation for K in order to speedup computations. If the compact encoding
proposed by Joye and Tymen [11] is used, then K can be obtained by generating
m random bits. In order to avoid computing the expensive inversion of (14),
we can transmit the nominator and denominator separately after blinding them
with b ∈R [1, q−1] as proposed in [20]: sn = b(e+dr) mod q and sd = bk mod q.
Because K affects only sd, we compute sn using cheaper integer arithmetic.
The denominator can be computed with a single multiplication in the τ -adic
domain: Sd = b × K by using Algorithm 4. The result of the multiplication
should be compressed by folding it with Algorithm 2 after (and at any time
during) the execution of Algorithm 4. Instead of transmitting a 2m-bit (r, s), we
now transmit approximately 3m-bit (r, sn, Sd). The server computes sd from Sd

and performs the modular division s = sn/sd (mod q), after which it proceeds
normally with the signature verification procedure from [21].

If transmission is expensive, the transmittable amount can be reduced to 2m
bits by computing the inversion in the tag and transmitting (r, S). In this case,
it is preferable to compute e+dr using integers, invert K using Algorithm 5, and
compute S = (e+ dr)×K−1 with Algorithm 4. Both S and intermediate values
should be folded with Algorithm 2 in order to limit the amount of storage and
transmission. In this case, the server simply converts S to s before proceeding
normally.

9 Conclusions and Future Work

In this paper, we showed that, contrary to previous beliefs, Koblitz curves can
be efficiently used in lightweight implementations even if integer arithmetic is
required with the scalar k. Because Koblitz curves offer more efficient scalar
multiplications compared to general binary curves, utilizing the findings of this
paper will probably enable more efficient lightweight implementations of ECC
than what has been possible in the past. We conclude with the following sugges-
tions for future research:

Future work 1. For Koblitz curve cryptosystems, resistance against side-channel
attacks can be achieved by using dummy point additions [7], randomized rep-
resentations for the scalar [7], or more efficiently with a zerofree representation
for the scalar [22, 27]. The approach presented in this paper can be straightfor-
wardly applied also in these cases. As mentioned in Remark 4, the side-channel
resistivity of the algorithms proposed in this paper can be improved, e.g., by
using Montgomery’s ladder [19] in Algorithms 3 and 4. The circuitries of Sec-
tion 6 can be implemented with secure logic styles (e.g., [26]) in order to limit
side-channel leakage. Although the more significant side-channel leakages are
typically in scalar multiplication parts, resistance against side-channel attacks
deserves further research in the future.

Future work 2. The registers for t occupy almost half of the areas of the addition
circuits. Hence, significant speedups and area-speed ratio improvements could
be achieved by processing several Ai and Bi in one iteration because this would
affect only the amount of logic, not the number of flip-flops.



Future work 3. As discussed in Section 7, the circuitries have negligible area
overheads if the shift registers for the operands can be shared with the circuitry
computing scalar multiplications. It will be studied in the future how registers
could be shared, e.g., with the compact architecture presented in [2].
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