
Caml Crush: a PKCS#11 Filtering Proxy

Ryad Benadjila, Thomas Calderon, and Marion Daubignard

ANSSI, France
{ryad.benadjila, thomas.calderon, marion.daubignard}@ssi.gouv.fr

Abstract. PKCS#11 is a very popular cryptographic API: it is the
standard used by many Hardware Security Modules, smartcards and soft-
ware cryptographic tokens. Several attacks have been uncovered against
PKCS#11 at different levels: intrinsic logical flaws, cryptographic vul-
nerabilities or severe compliance issues. Since affected hardware remains
widespread in computer infrastructures, we propose a user-centric and
pragmatic approach for secure usage of vulnerable devices. We intro-
duce Caml Crush, a PKCS#11 filtering proxy. Our solution allows to
dynamically protect PKCS#11 cryptographic tokens from state of the
art attacks. This is the first approach that is immediately applicable
to commercially available products. We provide a fully functional open
source implementation with an extensible filter engine effectively shielding
critical resources. This yields additional advantages to using Caml Crush
that go beyond classical PKCS#11 weakness mitigations.

Keywords: PKCS#11, filter, proxy, OCaml, software

Introduction

The ever increasing needs for confidentiality and privacy of information advo-
cates for a pervasive use of cryptography. However, the security provided by
cryptography itself completely relies on the confidentiality and integrity of some
(quite small) pieces of data, e.g., secret keys. Therefore, sound management of
this sensitive data proves to be as critical in ensuring any amount of security as
the use of cryptography itself. In practise, cryptographic material is accessed and
operated on through an Application Programming Interface (API). Protection
and handling of sensitive objects thus fall back on security APIs, which enable
external applications to perform cryptographic operations.

Normalization efforts have yielded the RSA PKCS#11 standard, which nowa-
days appears as the de facto standard adopted by the industry [18]. Therefore,
much effort should be devoted to the provision of solutions allowing for safe
and sound implementations of the PKCS#11 security API. In this article we
present Caml Crush, a secure architecture meant to protect vulnerable PKCS#11
middlewares. As an additional software layer sitting between applications and
the original PKCS#11 middleware, Caml Crush acts as a mandatory checkpoint
controlling the flow of operations. The result is a PKCS#11 filtering proxy which
can enforce dynamic protection of cryptographic resources through the use of an
extensible filtering engine.



Though software tokens do exist, it is rather classical to depend on hardware
assisted solutions, such as smartcards and Hardware Security Modules (HSMs).
Having put to test numerous platforms exposing the PKCS#11 interface, it has
come to our attention that the available implementations, be it open-source
or commercial solutions, often do not meet average requirements in terms of
standard compliance, robustness, let alone security properties. As many end-users
of HSMs are not granted the ability to modify (or even access) the source code
of their interface, tending to these diverse weaknesses whilst preserving standard
compliance commends for a global approach. Additionally, we aim to provide
users with means to dynamically customize such APIs according to self-imposed
restrictions or needs for vulnerability patches.

Possible improvements of the exposed API. The first and rather obvious
step to take is to enforce more acute conformity to the PKCS#11 standard.
Elementary as it seems, it really forms an inescapable axis of improvement,
as there exist deployed tokens dutifully answering direct requests to output
sensitive values, oblivious to the fact that the standard does explicitly prohibit it
(see, e.g., [11]). That being said, security requirements stated in the PKCS#11
specification cannot be reached by solely implementing the standard to the
letter. Indeed, the quite generic API described in the document bears inherent
flaws which enable logical key-revealing attacks, such as the notorious wrap-and-
decrypt attack. References depicting such attacks include [11,13,15]1. It is worth
mentioning that Bortolozzo et. al. introduce in [11] a tool, Tookan, allowing for
automatic API analysis and attack search. A second relevant amelioration of
tokens consists in patching PKCS#11 logical defects while remaining as close as
possible to the standard. In the meantime, it seems welcome to address possible
cryptographic attacks such as padding oracle existence.

Fixing the PKCS#11 standard. Two main alternatives can be chosen to
get a secure API: either try and fix the ubiquitous standard, or start over from
scratch. This latter possibility has been explored by Cortier and Steel in [14],
and by Cachin and Chandran in [12], who propose a server-centric approach. As
mentioned earlier, the need we address is to allow for a secure use of already
available – and even possibly deployed – tokens. This calls for the choice of the
first and more pragmatic alternative.

In [11], the authors exhibit a succesfully fixed PKCS#11 middleware: the
software token named CryptokiX [2], whose security has been verified using
the Tookan tool. CryptokiX is the work that bears the more similarities to our
approach, in the sense that it successfully patches a number of the PKCS#11
standard flaws. There is no way to ensure that vendors provide customers with a
patched version of their software. Hence, we believe that CryptokiX might not be
a viable alternative for customers using HSMs as they operate the cryptographic
resource with a proprietary and binary-only middleware. This objection put aside,
this work proves their patches realistic, and we reuse them in our work. Though
it is clear that no piece of software can replace a secure API embedded in the
hardware itself, we advocate a best-of-both-worlds approach in which users can

1 We refer the reader to the extended version of this paper [17] for more details



suit to their needs and constraints the trade-off between security, performance
and confidence in the token native implementation.

Our contributions. In this paper, we propose an additional middleware
and a software stack running a filtering proxy service between client applications
using cryptography and PKCS#11 compatible security devices. The idea is to
exclusively expose to regular users - or potential adversaries - the API as made
available by the proxy, rather than letting them interact with the commercially
available middleware. We show that Caml Crush provides the means to effectively
augment the security properties of the resulting solution. Obviously, these security
guarantees rely on the assumption that adversaries cannot bypass the proxy
- which we find to be relevant, according to several examples of deployment
scenarios presented in the paper.

We emphasize that Caml Crush allows to adequately patch problems in
PKCS#11 implementations, but not to search for them. Indeed, our architecture
includes a filtering engine able to hook API function calls to either simply block
them or filter them based on a run-time policy. Our proxy can feature any tailored
filtering functionality throughout the client connection’s lifetime. In particular,
it can be configured to enforce some or all of the aforementioned hardening
measures on top of any PKCS#11 interface.

Below is a non-exhaustive list of noticeable functionalities:

• every feature offered by CryptokiX is implemented in the filter module
included in Caml Crush: patches to all known logical attacks are readily
available.

• the PKCS#11 standard allows to tag cryptographic objects using labels or
identifiers. Caml Crush twists this feature to filter objects and thus restrict
their visibility. It finds an immediate application in virtualized environments
or resource sharing scenarios.

• our implementation and design choices ensure great portability and interop-
erability even on platforms with different operating systems and endianness.

• we provide solutions to other attacks (coding flaws, buffer overflows vulnera-
bilities, etc.) by blocking, altering, or detecting and disabling repeated calls
to a function.

We have validated our solution using both known attack implementations of
our own and the more exhaustive trials performed by the Tookan tool. Finally, we
underline the practical relevance of our work on several accounts. The filter engine
possible configurations allow for flexible filtering policies. The complete source
code of our implementation is made publicly available [1]. Moreover, the project
was architectured with modularity in mind: it features user-defined extensions
through plug-ins. Lastly, the performance cost measured in concrete deployment
scenarios turns out to be reasonable.

Outline. Section 1 introduces PKCS#11 key concepts, briefly describes
shortcomings of the API and details our motivations. Section 2 depicts the proxy
architecture while justifying our design choices. Section 3 focuses on the filtering
engine. Section 4 discusses deployment scenarios to secure various classes of
devices, while section 5 is both a security and performance evaluation.



1 Motivations of the Work

1.1 An Introduction to PKCS#11

PKCS are a set of standards developed to allow interoperability and compatibility
between vendor devices and implementations. The PKCS#11 standard specifies
a cryptographic API. This allows the cryptographic resource vendors to expose
common interfaces so that application developers can implement portable code,
while hiding low-level implementation details. A common way of exposing the
API is through OS shared libraries.

To abstract away from the cryptographic resource, PKCS#11 defines a logical
view of the devices: the tokens. To interact with the token, an application
opens a session in which objects are manipulated. Objects can be keys, data or
certificates and are used as input of cryptographic mechanisms defined by the
standard. The objects can differ in their lifetime and visibility. Non-volatile objects
are called token objects. They are accessible from all client applications. They
differ from session objects are not meant to be shared between applications,
and are destroyed once the session ends. Visibility of objects is also conditioned
on whether a user is authenticated. When no authentication has been carried out,
an application is only allowed to handle public objects, whereas authenticated
users can use private objects. Once a session is opened with a resource, users
traditionally achieve authentication by providing a PIN.

On top of implementing cryptography, tokens are meant to enforce security
measures w.r.t. the objects they store. Namely, the main feature expected from
tamper-resistant devices is that even legitimate users logging in on the token
cannot clone it using the API. Thus, one of the key concepts behind PKCS#11
is to enable the use of cryptographic mechanisms without passing sensitive values
in plaintext as arguments. The API uses handles to refer to objects, they are
local to an application and bound to a session.

PKCS#11 objects can be exported from or injected into a token. This allows
to save and restore keys (useful in case of broken or obsolete devices), but also to
share keys over public channels between tokens. PKCS#11 objects are defined by
a set of attributes which may vary depending on the object nature: symmetric
secret keys have their value as an attribute, while asymmetric private keys have
their modulus and exponents as attributes. Some attributes are common to all
the storage objects though: examples are the private attribute and the token

attribute characterizing the nature of the object (session vs. token objects as
introduced previously).

Since the confidentiality of secret objects must be preserved, only their
encrypted values are to be given to the user. PKCS#11 offers specific functions
to export and import objects: C WrapKey for wrapping and C UnwrapKey for
unwrapping. The result of a wrapping operation is an encrypted key value with
a key that is inside the token, so that only the ciphertext is exported. In turn,
keys used to protect other objects must be carefully managed. The PKCS#11
standard defines a few specific attributes to capture properties of keys allowing to
monitor their use. Briefly, the sensitive attribute, when set to TRUE, is meant



to prevent the user from fetching the value of the object, while an extractable

attribute with value FALSE should prevent the user from exporting the object
through a wrapping operation. Keys with attributes amongst encrypt, decrypt,
sign, verify, wrap and unwrap can be used for the corresponding operation.

1.2 Attacker Model and Usual Shortcomings Exhibited by
PKCS#11 Middlewares

Cryptographic resources implementing the standard are formed by some com-
bination of software and hardware, and need a piece of software to export the
PKCS#11 API. This latter is usually refered to as a PKCS#11 middleware.
In the case of a Hardware Security Module, this middleware might be partly
hosted inside the token, whereas for smartcards, it is a library to be loaded by
the operating system.

The issues addressed by Caml Crush mainly fall into two categories. Firstly,
Caml Crush allows to fix defects in the way middlewares implement the
PKCS#11 API, leading to unexpected behaviors that can break applications
expecting standardized answers. Secondly, Caml Crush enables the preven-
tion of purposeful attacks that consist in any interaction with the PKCS#11
middleware resulting in the leak of sensitive information (such as the values of
sensitive keys), or in tampering with the middleware itself (through classical
buffer overflow attacks for instance).

In a nutshell, our attacker model encompasses applications or users (be it
legitimate or not) forging any sequence of API calls leading to a successful
leak of sensitive information or API defect. Compared to usual definitions
of a successful attack – typically resulting in sensitive information disclosure – our
success criterion takes into account less obvious threats. Let us also emphasize
that the attackers that we consider remain at the PKCS#11 API level: this implies
that they only interact with the resource through the PKCS#11 middleware
and never gain a direct lower level access to the token. We discuss this attacker
model in 1.3 and give valid use cases in 4. In this model, PKCS#11 issues can
be classified in three categories.

Compliance Defects. The PKCS#11 standard comprehends a broad set
of features without providing a reference implementation, compliance is therefore
hard to achieve. Most tokens only implement part of the specification. Even
then, quite trivial inconsistencies have been found. Serious mishandling of the
attributes of keys probably feature amongst the most critical disagreements
with the standard requirements. Indeed, they very concretely lead to the output
in plaintext of the value of secret keys. Such behaviors are explicitly not
compliant with the specification.

PKCS#11 API-level Attacks. Even strict compliance with the standard
is not enough. Logical attacks that only exploit flaws in the API design itself
confirm it. The most famous example is perhaps the so-called wrap-and-decrypt
attack. It exploits the possibility to use keys for more than one type of oper-
ation, in order to extract sensitive keys from the token. Other attacks exploit
use of obsolete cryptographic schemes (e.g., DES) and of combinations of



mechanisms yielding padding oracle attacks. Details about flaws and possible
patches can be found in the extended version of this paper [17], and in the seminal
references [11,13,15].

Classic Vulnerabilities. Middlewares are also prone to the generic pitfalls
yielding vulnerabilities that an adversary can exploit in any piece of code. These
oversights include absence of checking for errors, presence of buffer overflows or
null-pointer dereferences. Consequences range from the pure and simple crash of
the middleware to the redirection of the control flow of the programs or execution
of arbitrary code. The large size and relatively low-level at which the PKCS#11
standard is specified make the resulting token implementations rather subject to
exhibit such weaknesses.

1.3 Our Motivations for Providing a Filtering Proxy

Limitations of State of the Art Solutions. In [11], Bortolozzo et al. intro-
duce Tookan, a tool to automatically search for attacks on PKCS#11 tokens,
along with CryptokiX, a reference implementation of a fixed software token. A
fork of openCryptoki [5], a famous PKCS#11 software implementation of the
standard, CryptokiX implements patches that turn out sufficient to fix the API
against logical and cryptographic attacks.

However, these works suffer from two practical limitations. Firstly, they only
take into consideration a subset of the attacks described in 1.2 (namely PKCS#11
API-level attacks). Thus, compliance defects as well as classic vulnerabilities are
not covered. Secondly, they can be of interest to token vendors, but are of limited
interest to token users in the field. Users are able to check with Tookan whether
their token is vulnerable to certain classes of attacks. Unfortunately, without the
vendor support nothing can be done, and the user still ends up using his token
despite its possible vulnerabilities.

As a consequence, the matter of fixing commercially available tokens is not
addressed by the related work. We envision two possible scenarios regarding this
issue. One can hope that vendors successfully repair existing vulnerable tokens
and integrate the countermeasures in their future designs. In our experience, it
takes a long time to achieve such a goal. We rather believe that vulnerable tokens
are not to completely disappear anytime soon. Many PKCS#11 devices, e.g.,
smartcards, cannot be updated easily, if they are updatable at all. Furthermore,
vendors will probably not maintain obsolete PKCS#11 devices, even if some are
still being used. Finally, when some vendors provide a patch for their tokens, it
is very likely that only the most recent platforms benefit from them. Deprecated
operating systems interfacing with the token will not be able to get updates.

Using Caml Crush to Dynamically Protect Vulnerable Tokens. Previ-
ous limitations call for the design of a suitable solution for users who want to
protect potentially vulnerable tokens, but are deprived of patches. With Caml
Crush, we aim at dynamically detecting and applying mitigations against attacks
on PKCS#11 requests before they reach the token. To do so, our solution



consists in a PKCS#11 proxy that sits between the original middleware and
the PKCS#11 applications. Alternatives include developing a replacement mid-
dleware, but low-level interfaces with devices are often proprietary. Therefore, we
opted for a lightweight and more portable solution. This induces some limitations,
though, discussed in 5.3.

Not only does our design implement the state of the art patches inherited
from [11], but it also comes with supplementary features. Caml Crush adds
to tokens a detection and protection layer against adversaries who can forge
PKCS#11 requests that exploit vulnerabilities on tokens that are known to be
vulnerable (e.g., to a buffer overflow on a PKCS#11 function argument). We
stress out that the hardware device remains in charge of secure key storage and
cryptographic operations.

We recall that we make one working hypothesis about the attacker capabilities
though: no adversary can bypass the PKCS#11 proxy and directly communicate
with the resource (see the attacker model discussed in 1.2). This is obviously
not a limitation in cases where the cryptographic resource is a – part of – a
dedicated machine on a managed network. This approach is easily applied to
network HSMs and more thoroughly discussed in 4.

2 Architecture

Using a proxy is an efficient approach in order to protect cryptographic re-
sources and vulnerable PKCS#11 middlewares. Though there exist some projects
implementing PKCS#11 proxies – among which GNOME Keyring [3] and pkcs11-
proxy [6] – they rather focus on performance, usability or ergonomic concern,
which are orthogonal to our motives. Thus, we have chosen to propose a com-
pletely new architecture. In this section, we motivate our design choices and
present the components of Caml Crush.

2.1 Design Choices

Critical pieces of the software use the OCaml language: it offers a static type
system, a type-infering compiler and relieves the programmer from memory
management issues. The functional programming paradigm is well-suited to
express filtering rules.

The communication layer plays an essential role in a proxy architecture. Caml
Crush uses standard Sun RPC [8] Remote Procedure Call and its XDR [10] data
serialization format. This ensures greater portability as most operating systems
have a native implementation of this standard. Caml Crush can operate over
Unix domain or TCP sockets and the link can be secured using TLS mutual
authentication. Acceptable TLS cipher suites are tunable on the server side.

To end up with code of higher quality, we generalize the use of automatic
code generation. We thus rely on the code of the tool, which is generally smaller
and well tested-out. It is very likely that it also reduces the introduction of
vulnerabilities in the resulting code (bad memory management, human errors...).



The PKCS#11 API matches each application with a context, mainly a list of
handles and session states (read-only, user logged, etc). The standard outlines
that “an application consists of a single address space and all the threads of
control running in it”, meaning that an application is mapped to a single process.
Therefore the logical separation of processes is supposed to isolate multiple
PKCS#11 contexts. This is handled by all operating systems supporting virtual
memory. In our opinion, using a multi-threaded architecture for the proxy is in
contradiction with the standard and bound to create unforeseen issues. This
partially explains why thread-based projects such as GNOME-Keyring or pkcs11-
proxy [3,6] were not reused. Caml Crush is a multi-process architecture handling
client connections through fork-exec. Each process is tied to a client and runs its
own instance of the filter engine, with its own object and session handles stored
in its memory space.

2.2 Components

One of the design goals of Caml Crush is modularity. Having the possibility
to replace portions of code while minimizing the impact is essential. This is
why Caml Crush is split in several sub-components. Figure 1 illustrates this
architecture.

PKCS#11 proxy

RPC Layer
PKCS#11
RPC server

PKCS#11
filter

PKCS#11
binding

RPC Layer

PKCS#11
exported
functions

PKCS#11 client library

TCP/UNIX socket

(SSL/TLS optional)

PKCS#11 interface

PKCS#11 interface

Real PKCS#11
middleware

(shared library)

Cryptoki ap-
plication

1

2

3 4 5

6

Smartcard
(token example)

Transport
layer (USB,
RS232 ...)

Fig. 1: Caml Crush architecture overview

OCaml PKCS#11 Binding 1 PKCS#11 middlewares are shared libraries.
Before performing calls to PKCS#11 functions, client applications must load the
middleware. While OCaml does not natively support loading a C shared library,
calling C foreign functions is allowed.



The binding is the low-level part of Caml Crush. It is used to load the
middleware and forward calls to the cryptographic resource. The code of this
component is mostly generated with the help of CamlIDL [9]. This tool can
generate the necessary stubbing code to interface OCaml with C. CamlIDL works
with an IDL file whose syntax is derived from C and enhanced to add type
information. This greatly simplified our work as the conversion code and memory
allocation are handled automatically. The resulting stubbing functions point to
corresponding symbols that call the PKCS#11 functions of the real middleware.
These were manually written and mainly act as a pass-through.

PKCS#11 Filter 2 Thoroughly detailed in section 3, the filtering engine relies
on the OCaml PKCS#11 binding 1 to communicate with the real middleware.

PKCS#11 Proxy 3 4 The proxy server is a critical component of this
architecture. Because it is facing potentially hostile clients it has to be robust
and secure. As motivated earlier, we choose to use one process per client to avoid
abusive sharing of handles, be it with honest or hostile clients.

We based our proxy service on the Ocamlnet library, and more specifically
the Netplex subclass, used to implement our PKCS#11 RPC listening service 3 .
We benefit from the support for the Sun RPC standard in OCamlnet. As for
the binding described earlier, we use a description file to produce the code in
charge of data serialization on the transport layer 4 . A file with the XDR syntax
describes the available RPC functions and the various structures. Both the client
and server take advantage of this.

Best security practices recommend dropping all unnecessary privileges for
system daemons. Since OCaml does not provide the necessary APIs to accomplish
this task to harden the server process we provide a custom primitive. After its
initialization, we instruct Netplex to call a function that performs capabilities
dropping and privilege reduction from our C bindings. Further hardening can be
achieved depending on the sandboxing features available on the operating system
running the Caml Crush daemon.

PKCS#11 Client Library 5 6 The final component is the PKCS#11
shared library that substitutes to the original middleware. Client applications
load it to perform cryptographic operations. The main task of the client library is
to set up a communication channel with the server, export PKCS#11 symbols 6

to the calling application and relay function calls to the proxy server with
serialized arguments. As for the proxy, the transport layer code 5 is generated
from the XDR file. Some sanity checks are performed within the library to
prevent invalid requests from reaching the proxy server. However, we want to
stress that the client library plays no role in the security of this architecture
(i.e. an attacker controlling the library does not reduce the overall security).



3 PKCS#11 Filtering Engine

3.1 Architecture of the Filter

PKCS#11 filter

Core engine

PKCS#11
RPC server

Filter frontend

Configuration
parser

Common
helpers

Inner state Actions

U
se

r-
d

efi
n

ed
ex

te
n

si
o

n
s

let my_new_function a =
if a then
...

OCaml

Filter backend

PKCS#11
binding

CONF LOGS

PKCS#11 interface

PKCS#11 interface

1

2

3 4

5

6

7
8

9

Fig. 2: Caml Crush filtering engine overview

Overview The engine is divided into several components detailed in Figure 2.
Firstly, it is isolated from the PKCS#11 proxy by a frontend 1 and from the
OCaml PKCS#11 binding by a backend 2 . Secondly, it includes a configuration
parser 3 , to process set-up data provided by the administrator. Helpers 4 are
also used for common tasks such as logging. Eventually, the filter core engine 5

performs the filtering actions within PKCS#11 calls, helped by requests to the
backend.

Core Engine 5 The configuration parser takes as input a configuration 6

(defined by the administrator) and uses it to build a static filtering policy. This
policy is expressed as a mapping from PKCS#11 function names to a sequence
of operations performed each time the given function is called 8 . The most
basic example of operation consists in simply forwarding the call to the backend,
getting the matching output and forwarding it back to the frontend. A filter
instance is loaded when an application opens a connection with the server, a
new process is forked on the proxy side. It is unloaded when the connection
is closed. The multi-process model grants Caml Crush the ability to load and
isolate multiple PKCS#11 middlewares. The filter configuration allows to apply
fine-grained filtering policies depending on the target middleware.



Actions 8 and User Extensions 9 The engine is architectured to allow
precise tuning of the filtering policy and user-specific extensions. To achieve such
modularity, we introduce an intermediate abstraction layer, built on the notion
of filtering actions 8 .

Two alternatives are available to users to adapt the filter to their needs.
Firstly, predefined configurations 6 are proposed, based on concrete use-cases.
They comprise all of PKCS#11 patches as well as function blocking and label/id
filtering (see 3.2). Secondly, users can write plug-ins in OCaml to suit their needs.
Since each PKCS#11 function is hooked inside the filter, it can be configured to
call any other user-defined function implemented in the plug-ins.

3.2 Filtering Features Involving Standard PKCS#11 Mitigations

Mitigations against Logical Attacks. Logical attacks detailed in 1.2 are
mainly due to exposing wrap and unwrap functions. Completely removing
them partially fixes the API, and proves relevant as most use cases do not
use them. To address the generic case, Fröschle et al. have proposed patches
in [16], then extended in [11]. They put forward two sets of patches, that each
presents their own advantages and drawbacks. Details about the patches can be
found in the extended version of this paper [17]. In our proxy design, these fixes
are naturally implemented as filtering actions. The checks are dynamically
enforced at runtime each time a PKCS#11 request is sent to the middleware.
Caml Crush provides the same security level as CryptokiX against logical attacks.

Mitigations against Cryptographic Attacks. Efficiently preventing the
usage of obsolete ciphers and mechanisms implies prohibiting their usage
in the token. Our filter engine allows to mimic the absence from a token of weak
mechanisms – e.g., substandard cipher suites or poor key derivation schemes.
Indeed, all the cryptographic functions called with these mechanisms can be
blocked, as well as the creation of keys supporting them. To avoid impacting
client applications, we also amend the behavior of functions listing mechanisms
supported by the token. Padding oracle attacks can also be prevented this way:
mechanisms as PKCS#1 v1.5 and CBC PAD can be deemed “weak mechanisms”.
As padding oracles exploit the unwrapping functionality, these latter can be
suppressed when useless. When removal is unrealistic, a better alternative is
provided by the wrapping format patch (see details in [17]). This patch precludes
the decryption of malformed ciphertexts, thus preventing the information leakage
useful to these attacks.

3.3 Object and Structure Filtering

Resource Sharing and Label/Id Filtering. Though client applications can
have different criticality levels, they most likely share the same cryptographic
resource. This can lead to involuntary information leaks: as PKCS#11 defines a



single user mode of operation, an application authenticated to the token can use
any private token object.

PKCS#11 allows applications to search for objects matching certain attributes.
One can fetch a handle to a specific object using its label or identifier

attribute. We propose to use both attributes in the filter engine to restrict the
set of token objects with which an application can operate. It can be done in a
completely transparent way. For instance, by prefixing or suffixing labels used by
applications with criticality levels. Then, calls to PKCS#11 functions with which
objects can be accessed, read or modified are adapted by the filter to simulate a
token containing only the objects of a given criticality level. A concrete use case
of this feature is given in section 4.2.

Key Usage Segregation. As mentioned earlier, many PKCS#11 flaws result
from some keys being allowed multiple usages or roles. Even subtle ways of
disrespecting the key separation principle yield confusions at the API level and
enable attacks. The fixes presented in [16,11] mainly focus on wrap/unwrap and
encrypt/decrypt segregation. One might also want to push this logic further
with the sign/verify attributes. For example, a PKI (Public Key Infrastructure)
application only needs to sign and verify data with the asymmetric keys. Disabling
other uses of these keys seems relevant. All these patches have been easily
integrated to the filtering rules we provide.

Token Information Filtering. PKCS#11 describes a set of structures that
characterize a token. For instance, the CK TOKEN INFO structure contains infor-
mation such as a serial number, a manufacturer ID and so on. The filtering proxy
can be used to transparently modify such information: for instance, a PIN length
policy can be set up by changing the ulMinPinLen and ulMaxPinLen fields. A
policy on the characters set as well as protection against dictionary attacks can
also be enforced when setting PINs. It is readily enabled by the hooking of
PKCS#11 functions C InitToken and C SetPIN performed in the filter engine,
to allow returning an error if the PIN disrespects the policy.

3.4 Blocking PKCS#11 Functions and Mechanisms

Function blocking offers a simple way to deactivate unused or dangerous features
of PKCS#11. Though rather elementary, disabling functions can prove effective
to prevent security breaches often left unadressed by usual PKCS#11 patches.
For example, one can express a filtering policy to block administration functions,
thus only allowing regular use of the token to clients connecting to this instance.

Furthermore, we recall that provided that the user is authenticated, he can
freely create and modify objects on the token. This in turn potentially enables
him to tamper with the device to force known values as keys. Blocking object
creation and modification offers a way to impede such attacks, thus addressing
the issue of hostile users, while object management can still be performed on a
dedicated trusted filter instance.



Finally, as pointed out before, mechanisms filtering can also be of interest, be
it to completely block unwanted mechanisms, or to filter out some combination
of operations.

3.5 Security Breaches Beyond PKCS#11 Flaws

Fixing Generic Coding Errors Since the filter sits between the client ap-
plication and the PKCS#11 middleware, one can detect, filter and alter any
known bad request or behaviour of malicious applications. Thus, prevention of
vulnerability exploitation, or more generally mending design flaws in middle-
wares, puts the proxy to good use. Let us illustrate these words with a realistic
example of an error that we found in an existing middleware, in the PKCS#11
C SetPIN function call, as presented on listing 1.1.

CK_RV C_SetPIN(CK_SESSION_HANDLE hSession , CK_UTF8CHAR_PTR pOldPin , CK_ULONG
ulOldLen , CK_UTF8CHAR_PTR pNewPin , CK_ULONG ulNewLen){

...
/* Compare stored PIN with old PIN */
if(memcmp(StoredPin , pOldPin , ulOldLen) == 0){

/* If test is ok , store the new PIN */
*StoredPinLen = ulNewLen;
memcpy(StoredPin , pNewPin , ulOldLen);
return CKR_OK;

}
/* Provided old PIN is incorrect */
return CKR_PIN_INCORRECT;

}

Listing 1.1: C SetPIN coding error example

As we can see, the newly stored PIN is either truncated or extended to the
old PIN length; either way it is rendered erroneous by a call to C SetPIN. The
inherent risk is to block the underlying token, the user having no clue which PIN
is actually set. Even though it is not possible to truly patch this error without
modifying the code or the binary of the middleware, the filtering proxy can help
avoiding such a pitfall. The filtering actions associated to the C SetPIN function
can consist in checking that the old and new PIN share the same length before
forwarding the call to the middleware. In case lengths do not coincide, the proxy
returns the error CKR PIN LEN RANGE and the PIN is not modified. The client
application can later fetch the correct length it needs using another PKCS#11
function and call C SetPIN again. Although a constant PIN length is forced, the
entered PIN and the stored one are consistent.

Preventing Denial of Service PKCS#11 defines a calling convention de-
scribed in [18, p. 101] for functions returning variable-length output data. In
some cases, the affected functions are supposed to handle either null or valid
pointers. During our development we observed that some middlewares end up
dereferencing null pointers. These vulnerabilities are easily prevented by imple-
menting a filter action that performs input sanitizing.

Another example we encountered is that using a cryptographic function with
a malformed input (a non-standard mechanism) we could freeze a token, leading



to the unavailability of the cryptographic resource. Again, this behavior was
corrected using a custom filter action, the malformed input is not sent to the
device and a PKCS#11 compliant error is returned to the client application.

We advocate that a large set of such coding errors and vulnerabilities can
similarly be corrected by stopping or modifying malformed requests before they
reach the middleware.

4 Deployment Scenarios

Security guarantees provided by Caml Crush rest upon the assumption that going
through the proxy is mandatory. Yet it is potentially still possible to connect to
the cryptographic resource directly. For instance, an attacker could try to load
the vendor middleware or use the transport layer to directly communicate with
the device. Though such attacks are realistic, we advocate that for any type of
token, complementary security measures can mitigate this issue. This section
discusses secure deployment strategies for Caml Crush.

4.1 HSMs in Corporate Networks

Network HSMs provide a convenient way to perform cryptographic operations
and securely store keys in a corporate environment. They are frequently used
as backends for PKI solutions, timestamping servers and document or code
signing applications. Traditionally, these devices can be considered as black boxes,
accessed using the interfaces provided by the vendor (usually PKCS#11). In
this context of use, Caml Crush is to be installed on a dedicated server with
at least two network cards. The first card shall be directly connected to the
network HSM, thus shielding the device from any other hosts, while the second
network card shall be connected to the corporate network. Since the HSM is only
linked to the proxy, client applications are forced to access the cryptographic
resource through our filtering proxy using the Caml Crush client library. Clearly,
meticulous users can apply complementary hardening measures to further reduce
the attack surface of the server hosting Caml Crush.

In rare cases, HSM vendors allow non-proprietary code to run on their
platform. These particular devices offer a way to tightly couple Caml Crush with
the cryptographic device without needing additional hardware. We also point
out that OEM vendors who integrate standalone HSMs (such as PCI devices)
can benefit from Caml Crush when it is accessed using PKCS#11. As they may
face the same issues as customers when provided with binary-only middlewares,
they shall integrate Caml Crush within their designs.

4.2 Virtualized Environment

Caml Crush can be used within virtualized operating systems in order to securely
use a cryptographic resource. Figure 3 illustrates such a deployment scenario. In
this example, the PKCS#11 device is only exposed to the trusted hypervisor,



virtual machines wishing to use the resource can only do so using the Caml
Crush client library. This architecture also leverages Caml Crush resource sharing
capabilities using a filtering policy dedicated to each virtual machine. Here, the
policy for Virtual Machine 1 restricts PKCS#11 applications to use objects with a
label in the set A (resp. B for VM 2). Therefore, the filtering engine transparently
compels virtualized environments to use objects matching their respective policy.

While this scenario uses the hypervisor isolation features, more lightweight
isolation alternatives exist for standalone desktops using USB smartcards. The
Linux operating system can be enhanced with Mandatory Access Control (MAC)
support such as SELinux [7] or Grsecurity role-based access control [4]. Building
on discretionary access control and MAC enforces a security policy restricting
PKCS#11 and low-level smartcard access to Caml Crush instances.

Virtual Machine 1 Virtual Machine 2

Trusted Hypervisor

PKCS#11
application

objects

Caml Crush
PKCS#11

client
library

PKCS#11
application

objects

Caml Crush
PKCS#11

client
library

Caml Crush
Allowing

labels in A

Allowing
labels in B

Middleware Middleware

Cryptographic Token

A

A

B

B

handles handles

Fig. 3: Caml Crush used for resource sharing in a virtualized environment

4.3 Mobile and Embedded Platforms

Given the fact that vendors provide binary-only PKCS#11 middlewares, compati-
bility is generally limited to mainstream operating systems and microarchitectures.
In our opinion, running an unconventional CPU platform (such as MIPS or ARM
to a lesser extent) should not stand in the way of the use of hardware-assisted
cryptography. Having chosen standardised communication protocols ensures great
portability of our code. Our initial implementation was Linux specific but it
is worth mentioning that porting to Mac OS X and FreeBSD required little



efforts. Windows support is limited to the client library, running the server code
through Cygwin is a work in progress. A native Windows port for the server is
not excluded but requires significant development. We stress that Caml Crush is
fully capable of handling clients with a foreign endianness. We have successfully
validated interoperability scenarios using our PKCS#11 client library on ARM,
MIPS and PowerPC architectures. Corporate environments can benefit from the
variety of systems supported, from embedded to mobile devices or legacy systems,
in order to access remote PKCS#11 resources through the use of Caml Crush.

5 Evaluation

5.1 Security Evaluation

We ensure that the filtering engine performs as expected, i.e. protects vulnerable
devices, using two complementary approaches. First, we have implemented classic
PKCS#11 attacks to manually verify the efficiency of our filtering rules. Then,
since manual verification can only go so far, the Tookan tool is used to try finding
attack paths.

On a Linux computer, we installed openCryptoki, a software HSM. We also
compiled and installed Caml Crush on this machine and configured it to use the
default filtering rules. These latter enforce the needed properties described in
the extended version of this paper [17] to secure the PKCS#11 API (conflicting
and sticky attributes, wrapping format). Unsurprisingly, the unprotected device
remains vulnerable. However, once instructed to use the Caml Crush client library,
our filtering engine works as expected since neither Tookan nor our manual tools
are able to identify or perform attacks. The completeness result obtained by the
authors of Tookan allows to deduce that the filter efficiently prevents all attacks
that can be carried out in the model underlying their tool.

5.2 Performance Evaluation

In this section we present the various test cases that we used to quantify the
performance impact of our solution. The experiments were conducted on three
different platforms, a PCI HSM, a network HSM and a USB smartcard. For
each cryptographic device, our benchmark is run three times. First, the raw
performance is computed using various cryptographic operations. Second, we
run the same benchmarks using Caml Crush with the filtering engine disabled
to measure the architectural cost. Finally, we enable all of our filtering rules to
add up the remaining cost of Caml Crush. Figure 4 summarizes the types of
operations we used during our performance testing, as well as the number of
such operations performed on each type of device. We point out that the card is
a USB smartcard using an open source middleware and has fewer capabilities
compared to HSMs. We iterated the type of operation depending on the device
performance. HSMs and network HSMs are fast devices capable of handling
multiple requests at the same time. Therefore, we also ran benchmarks simulating
multiple client applications performing the described operations (about ten clients
running various operations).



PCI HSM Figure 4 illustrates the performance impact of Caml Crush using
a sequential client application. The most significant performance drop affects
the aes operations. These are fast operations and adding Caml Crush on top of
such local devices reduces throughput. The key-gen and rand-dgst operations
respectively have a 25% and 50% performance penalty. On the other hand, rsa
tests are time-consuming operations and the impact is negligible. The right side of
the figure clearly demonstrates that when the resource is accessed using multiple
applications at the same time, the impact of Caml Crush is low.

Network HSM We now focus on the evaluation on a network HSM, the results
are shown on figure 4. The observation is similar to the PCI-HSM, using a single
sequential client, Caml Crush has roughly the same performance impact. We recall
that the filter engine fetches attributes from the device when processing PKCS#11
calls (using C GetAttributeValue). Those supplementary calls account for a
large portion of the throughput drop. Again, Caml Crush cost is reduced when
the cryptographic resource is under heavier load from multiple clients.

Smartcard The performance impact of Caml Crush related to the smartcard
at our disposal is illustrated on figure 4. Smartcards are rather slow devices and
perform through the USB bus. Given this, we observe a 20% drop on rsa tests
and less than 10% on the rand-dgst operations.

We used various benchmarks to quantify the performance cost of our solution.
Assembling a software layer on top of another one obviously consumes some
resources. In our case, the RPC layer accounts for a substantial part of the
performance penalty. Furthermore, the supplementary calls needed by the filtering
logic add an overhead that is device-specific. Nevertheless, we state that the
performance trade-off remains acceptable.

5.3 Filter Limitations and Future Work

Currently, the filtering engine lacks the ability to adapt filtering actions based
on the state between different client connections. We described in 2.1 that each
client’s connection is isolated in separate processes. Caml Crush would need
to use Inter-Process Communication (IPC) mechanisms in order to exchange
state-related messages. It could prove useful in some filtering scenarios but would
require development of synchronization primitives and significantly increase the
code complexity. Such feature would probably have further impact on the overall
performance.

Another limitation is that the current filter plug-ins use the OCaml marshalling
module that lacks type safety: this means that extra care must be taken by users
when writing code as filter extensions. Errors in the plug-in code could indeed
evade the compile-time checks, and might allow an attacker to tamper with the
memory of the server instance (process) dealing with the client. The implications
of such memory tampering of OCaml native structures is not clear, but it would
at least provide the attacker with a denial of service capability on the instance.



Albeit, the attacker would not be able to attack other clients instances thanks to
the fork-exec model (provided that appropriate operating system level protections
and sandboxing features are used).

Furthermore, writing plug-ins requires expertise in OCaml. We are currently
working toward the removal of marshalling functions. We profit from this step
in the filter development to rethink the way filter actions are encoded. We plan
on introducing an intermediate domain-specific language using more generic
and fine-grained atomic actions. This would allow advanced users to use this
intermediate language to specify filter actions. Such an abstraction is meant to
relieve users from dealing with the complexity of OCaml and adherence to our
design choices in the filter backend.

Conclusion

We are able to dynamically address security issues of the PKCS#11 API. Related
work has paved the way to resolve these issues with a reference PKCS#11 software
implementation. However, applying such countermeasures is left to the vendors of
cryptographic devices. This is insufficient as commercially available and already
deployed devices remain vulnerable. Caml Crush offers an alternative to protect
cryptographic resources from state of the art attacks. Substituting the original
middleware with our proxy and filtering PKCS#11 function calls is a pragmatic
and effective approach. Moreover, the filter engine is conceived to be modular: it
is possible to customize and extend the filter with plug-ins written in OCaml.

The filtering engine of Caml Crush is versatile enough to enable complemen-
tary features such as function blocking, improved PKCS#11 compliance and
secure resource sharing We are confident that these functionalities find immediate
application for users of compliant cryptographic devices.

References

1. Caml Crush. https://github.com/ANSSI-FR/caml-crush/.
2. CryptokiX. http://secgroup.dais.unive.it/projects/security-apis/cryptokix/.
3. GNOME Keyring. http://live.gnome.org/GnomeKeyring, .
4. grsecurity. http://http://grsecurity.net/.
5. openCryptoki. http://sourceforge.net/projects/opencryptoki/.
6. pkcs11-proxy. http://floss.commonit.com/pkcs11-proxy.html, .
7. SELinux. http://selinuxproject.org/.
8. Sun RPC RFC 1057. http://www.ietf.org/rfc/rfc1057.txt, 1988.
9. CamlIDL project page. http://caml.inria.fr/pub/old caml site/camlidl/, 2004.

10. XDR RFC 4506. http://tools.ietf.org/html/rfc4506, 2006.
11. M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and fixing

PKCS#11 security tokens. In ACM Conference on Computer and Communications
Security, pages 260–269. ACM Press, Oct. 2010.

12. C. Cachin and N. Chandran. A secure cryptographic token interface. In CSF 2009,
pages 141–153. IEEE Computer Society, 2009.

13. J. Clulow. On the security of pkcs#11. In CHES 2003, pages 411–425, 2003.

https://github.com/ANSSI-FR/caml-crush/
http://secgroup.dais.unive.it/projects/security-apis/cryptokix/
http://live.gnome.org/GnomeKeyring
http://http://grsecurity.net/
http://sourceforge.net/projects/opencryptoki/
http://floss.commonit.com/pkcs11-proxy.html
http://selinuxproject.org/
http://www.ietf.org/rfc/rfc1057.txt
http://caml.inria.fr/pub/old_caml_site/camlidl/
http://tools.ietf.org/html/rfc4506


14. V. Cortier and G. Steel. A generic security api for symmetric key management on
cryptographic devices. In ESORICS, pages 605–620, 2009.

15. S. Delaune, S. Kremer, and G. Steel. Formal security analysis of pkcs#11 and
proprietary extensions. Journal of Computer Security, 18(6):1211–1245, 2010.

16. S. B. Fröschle and G. Steel. Analysing pkcs#11 key management apis with
unbounded fresh data. In ARSPA-WITS 2009, pages 92–106, 2009.

17. R. Benadjila, T. Calderon, M. Daubignard. CamlCrush : a PKCS#11 Filtering
Proxy. http://eprint.iacr.org/2015/063, 2014.

18. RSA Security Inc. PKCS#11 v2.20: Cryptographic Token Interface Standard, 2004.

http://eprint.iacr.org/2015/063


Token types

PCI HSM and NetHSM USB Smartcards

7 The token does not support the operation types.
†Number of operations performed on the token to measure performance.

Operation type Number† Operation type Number†

key-gen
AES-128

Generate keys
104 7 7

rand-dgst

random/SHA-1
Generate random

then hash it

104
random/SHA-1

Generate random
then hash it

103

rsa

RSA-2048
encrypt/decrypt

sign/verify
104

RSA-2048
sign/verify 103

aes
AES-128

encrypt/decrypt
105 7 7

0 20 40 60 80

rand-dgst

rsa

key-gen

aes

native
proxy
filter

Relative Timings

O
p

er
a
ti

o
n

T
y
p

e

PCI HSM sequential processing

100% 0 20 40 60 80

rand-dgst

rsa

key-gen

aes

native
proxy
filter

Relative Timings

O
p

er
a
ti

o
n

T
y
p

e

PCI HSM parallel processing

100%

0 20 40 60 80

rand-dgst

rsa

key-gen

aes

native
proxy
filter

Relative Timings

O
p

er
a
ti

o
n

T
y
p

e

NetHSM sequential processing

100% 0 20 40 60 80

rand-dgst

rsa

key-gen

aes

native
proxy
filter

Relative Timings

O
p

er
a
ti

o
n

T
y
p

e

NetHSM parallel processing

100%

0 50 100 150

rand-dgst

rsa

native
proxy
filter

Relative Timings

O
p

er
a
ti

o
n

T
y
p

e

Smartcard sequential processing

100%

Fig. 4: Performance of Net/PCI-HSM and smartcards.
Relative timings are used, the operation taking maximum time is at 100%


	Caml Crush: a PKCS#11 Filtering Proxy
	Motivations of the Work
	An Introduction to PKCS#11
	Attacker Model and Usual Shortcomings Exhibited by PKCS#11 Middlewares
	Our Motivations for Providing a Filtering Proxy

	Architecture
	Design Choices
	Components

	PKCS#11 Filtering Engine
	Architecture of the Filter
	Filtering Features Involving Standard PKCS#11 Mitigations
	Object and Structure Filtering
	Blocking PKCS#11 Functions and Mechanisms
	Security Breaches Beyond PKCS#11 Flaws

	Deployment Scenarios
	HSMs in Corporate Networks
	Virtualized Environment
	Mobile and Embedded Platforms

	Evaluation
	Security Evaluation
	Performance Evaluation
	Filter Limitations and Future Work



