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Abstract. While in the early 2000’s lots of research was focused on
Differential Power Analysis of first and second-order, it seems the re-
cent trend is of even higher-order. As this order grows, countermeasures
such as masking need to be designed in a more generic way. In this pa-
per, we introduce a new constant weight implementation of the AES
extending the idea of the software dual-rail countermeasure proposed by
Hoogvorst et al. at COSADE 2011. Notably, we illustrate its practicality
on 16-bit microcontroller in terms of speed and complexity. This counter-
measure applies to all devices that leak a function of the Hamming weight
of the internal variables. Under this assumption, our constant weight im-
plementation is theoretically inherently resistant to side-channel attacks
of any order. A security evaluation is conducted to analyze its resistance
when the leakage slightly deviates from the Hamming weight assumption.
It reveals that the countermeasure remains as good as several well-known
masking countermeasures. Moreover, the proposed countermeasure offers
the possibility to detect some classes of faults.

Keywords: Constant weight, information theoretic analysis, side-channel anal-
ysis, AES, software implementation.

1 Introduction

Since the introduction of Differential Power Analysis (DPA) by Kocher [12],
Side-Channel Analyses (SCA) have become important issues for the security of
cryptographic devices. During the two last decades, a lot of efforts have been
dedicated towards the research about SCA and the development of corresponding
countermeasures.

A very common countermeasure to protect implementations of block ciphers
against SCA is to randomize the sensitive variables by masking techniques. The
core principle of masking is to ensure that every sensitive variable is randomly
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split into at least two shares so that the knowledge of a strict sub-part of the
shares does not give information on the shared variable itself. Masking can be
characterized by the number of random masks used per sensitive variable. So,
it is possible to give a general definition for a dth-order masking scheme: every
sensitive variable Z is randomly split into d + 1 shares M0, · · · ,Md in such a
way that the relation M0 ⊥ · · · ⊥ Md = Z is satisfied for a group operation ⊥
(e.g. the XOR operation in Boolean masking) and no tuple of strictly less than
d+ 1 shares depends on Z. Obviously, a dth-order masking can be theoretically
defeated by a (d+1)th-order SCA attack that jointly involves all the d+1 shares.

In the literature, several provably secure higher-order masking schemes have
been proposed, see for instance [3],[23] and [5]. But, due to their large penalty
factors (complexity and speed), these countermeasures are unpractical for an
everyday use of a smartcard.

In this paper, we perform an in-depth analysis of an alternative to masking
countermeasure which consists in coding the data with a fixed Hamming weight
value, and perform all operations following this fashion. It is often assumed that
a device leaks information based on the Hamming weight of the data being op-
erated on, or the Hamming distance between the processed data and its initial
state. This assumption is quite realistic and many security analyses in the liter-
ature have been conducted following this model [2],[17]. This paper introduces
a new variety of constant weight codes which can be used to secure software
implementations of block ciphers. Typically, we show that assuming a Hamming
weight leakage function (or even some small variations of it), it is possible to
prevent side-channel attacks.

The rest of the paper is structured as follows. We first recall the two published
constant weight (dual-rail) implementations of a block-cipher in software and
look into their advantages and drawbacks in Sec. 2. Then, we describe a new
solution for a constant weight implementation in Sec. 3, and apply it to the AES
in Sec. 4. Finally, we conduct an information theoretic analysis in Sec. 5, and a
security analysis in Sec. 6 to evaluate our proposed scheme. The conclusion and
some perspectives are in Sec. 7.

2 Previous works

Hoogvorst et al. [10] presented a dual-rail implementation of PRESENT [1]
in 2011. The paper aimed at proving that one could rather easily protect a
block cipher in software using constant weight coding style rather than using
masking. The idea was straightforwardly taken from existing dual-rail hardware,
and consists in encoding one bit s.t. 0→ 01 and 1→ 10 (or the inverse).

The adaptation of this solution to software implementation required comput-
ing tables performing all basic operations such as XOR, AND, etc. In the end,
the execution is 9 times slower than their original unsecured implementation.
The memory cost is minimal: only very little non-volatile memory is required to
store the tables (256 for the Sbox and 16 bytes for the XOR operation) and an
unchanged RAM cost. Given the theoretical protection offered by such an imple-
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mentation, it seems a very attractive choice cost-wise. Note that the complexity
to achieve such a protection was minimal thanks to the very lightweight struc-
ture of PRESENT (only two types of operations used) and to the assumption
that the expanded keys were already in dual-rail representation. No side-channel
analysis was conducted and it is argued that this coding style seems limited to
lightweight ciphers, or AES in a different field representation.

The authors in [8] introduce an improvement on the previous idea which
drastically simplifies the XOR operation. Moreover, a side-channel and perfor-
mance analysis of PRESENT and Lightweight Block cipher under this form are
presented. No vulnerability appears when targeting the S-box output. The over-
head in execution time is almost negligible.

However, the trick used to accelerate a XOR operation induces a leakage. The
authors noticed that for any pair of variables (A,B), we have C(A)⊕C(B)⊕01 =
C(A ⊕ B), where C denotes the chosen dual-rail code. Performing a constant
weight XOR does not require an access to a precomputed table this way. They
argue that performed in some precise order, these operations do not leak a
potential secret value. This works if one assumes there is only a single secret
value XORed with a non-secret. Unfortunately, this assumption cannot be made
for the second round of PRESENT and for the AES, as the XORs performed
during the first MixColumns operation contain information on the secret key in
both operands, making a side-channel attack possible.

In [22], Rausy et al. present a balancing strategy based on the execution of
binary operators only. This balancing protection uses dual-rail with two bits
in the registers, selected to be as similar as possible in terms of leakage, and
S-Boxes are computed using a bit-slice representation.

All the aforementioned works tried to enforce the dual-rail representation. In
this paper, we turn our attention to other classes of constant weight strategy.

3 A constant weight AES

3.1 The AES algorithm

The AES [15], formerly known as Rijndael has been the international standard
for symmetric ciphers and much research has focused on securing it against side-
channel attacks since its adoption in 2000. It can be described as having four
layers: a Substitution (SubBytes), a permutation (ShiftRows), a mixing phase
(MixColumns) and a Key Addition (AddRoundKey).
The SubBytes phase is a nonlinear transformation in GF (28) and is often im-
plemented as a table lookup in software. ShiftRows is simply a sequence of byte
swaps. MixColumns is a matrix multiplication of all 16 bytes of the AES state
with a constant matrix, it can be implemented as several bitwise XORs and field
multiplications. Those multiplications are based on an operation called Xtimes,
which is the multiplication of a polynomial (represented as a byte) by X over
GF (28). This procedure is a simple bit test and a shift, plus a conditional XOR
with a constant. It could also be implemented as a table look-up to avoid timing
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attacks. The last operation, AddRoundKey, is a simple XOR between the state
values and a round key.

3.2 Constant weight codes

Constant weight codes have a simple definition: it is any code that has all its
words of a given weight, say ω. In the following, we denote (x,y)-code the set
of values of weight x over y bits, which contains

(
y
x

)
elements. The dual-rail

representation is a specific case of these codes, but it is not the only option one
should consider in a software setting. It is adapted to the hardware environment
as one has to deal with pair-wise balancing of wires. In software, one could simply
use the code with the smallest cardinal available to encode the input set of data.
A 4-bit data set contains 16 elements. The (3, 6)-code presented in Tab. 1 (the
set of 6-bit words of Hamming Weight 3) contains 20 elements, and is therefore
large enough to encode the previous 4-bit set. Encoding (non-linearly) in this
way could simply be a random assignment. For the rest of this paper, we will
refer to the (3, 6)-code simply by C.

Table 1. (3, 6)-code

0 → 000111 4 → 010011 8 → 011010 12 → 100110

1 → 001011 5 → 010101 9 → 011100 13 → 101001

2 → 001101 6 → 010110 10 → 100011 14 → 101010

3 → 001110 7 → 011001 11 → 100101 15 → 101100

3.3 Encoded operations

Let us denote by C(A) (respectively C(B)) the encoded form of the variable A
(respectively B) in a constant weight representation. Then, the operation A ⊥ B
(where ⊥ is any operation like XOR, AND etc. ) can be performed in a non-
leaking manner using a precomputed table T such that: T [(C(A)� n) || C(B)] =
C(A ⊥ B), where n is either the size of the codewords (e.g. n = 6 for the (3, 6)-
code) or the size of a processor word (i.e. n = 8) That is, if we prepare an index
in this table by appending one encoded value to the other and then fetch the
result from T , we get the encoded result of A ⊥ B.

For AES, we have to encode 8-bit values. Straightforwardly done, it would
take up to 16 bits per state byte in dual-rail. The table for the S-box precomputed
to fit this code would span 128 Kbytes of data, which is not a reasonable option
for a conventional smartcard. Instead, in [10] authors propose to use the GF (24)
representation of AES. The S-box is then performed as a sequence of inverses
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and multiplications in that same field. This variant is expected to perform slowly
due to these operations, see [16] for example. We aim to provide an alternative
that performs fast and occupies an acceptable memory space.

For AES block cipher, the smallest code that can encode all of the 256 possible
elements of the state is the (5, 11)-code (462 elements). The table for performing
the S-box would be indexed by 11 bits, thereby spanning 2048 elements of 11
bits each, which would amount to 4 KBytes in a realistic implementation. This is
acceptable, but the problem arises from the XOR operation. In dual-rail, it could
be done 2 bits by 2 bits, but with the (5, 11)-code it is not possible anymore, as
this encoding is non-linear. To perform a XOR, a 22 bits index is needed under
this form. Of course, this exceeds by far the capacity of any smartcard, so this
code is a bad choice. Instead of coding a whole 8-bit variable W into a constant
weight word, we split it into two 4 bits words (a high word HB and a low word
LB) and encode each of them separately, but using the same C:

W = 0011︸︷︷︸
HB

1011︸︷︷︸
LB

, C(W ) = 001110︸ ︷︷ ︸
C(HB)

100101︸ ︷︷ ︸
C(LB)

This way, linear operations can be performed on the two halves separately at
a much lower memory cost. The table for the S-box is now indexed by 6+6 = 12
bits, which is 4096 elements, and it is the same cost for the XOR. The operations
cannot be made at once in this case though. As the Arithmetic Logic Unit (ALU)
can only retrieve a byte from memory, we need two accesses to obtain both the
HB and the LB of the S-box result. We end up with three tables of 4 KBytes
each : one for the S-box’s high bytes, one for the low bytes, and one for the XOR.
The instruction sequence performing a XOR between two (3, 6)-codewords A and
B, equal respectively to (aaaaaa) and (bbbbbb) in binary, is shown in Listing 1.1.
Displayed on the right is the state of the 16-bit registers used. We stress the fact
that line 5 is here to prevent any leakage in the Hamming distance model.

1 mov ax, #0 // ax = 00000000 00000000

2 mov Rh, A // ax = 00aaaaaa 00000000

3 mov Rl, B // ax = 00aaaaaa 00bbbbbb

4 xor ax, &table // ax = ddaaaaaa ddbbbbbb

5 mov bx, #0 // bx = 00000000 00000000

6 mov bx, [ ax ] // bx = 00000000 00cccccc = C(A xor B)

Listing 1.1. Table accesses in constant weight (x86 assembly style)

All performed operations meet the constant Hamming weight specifications.
The constraints on the address format (2 bits set in the middle (dd)) is easily
treated by modern compilers, which usually allow declaring tables at a specific
address (e.g. the IAR compiler with the @ keyword).
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4 Encoding the AES

In this section, we show how the various operations of the AES could be imple-
mented in a constant weight fashion. There are mainly three different types of
operations:

(i) Non-linear transformations of one word, i.e. SubBytes;
(ii) Two-operand operations, i.e. XOR;

(iii) Linear transformations of one word, i.e. Xtimes.

In the sequel, we denote by Ah (respectively Al) the most significant (respec-
tively the least significant) 4 bits of a byte A (A = Ah || Al).

Computation of type (i). The SubBytes operation will be performed in two
accesses : one for the MSB of the result which will be put in register Rh, and
another for the LSB which will be stored in register Rl such that:

Rh ← high subbytes[ (C(Ah)� 8) || C(Al) ] = C(SubBytes(Ah)) ,

Rl ← low subbytes[ (C(Ah)� 8) || C(Al) ] = C(SubBytes(Al)) .

Computation of type (ii). It is a similar case for the XOR operation, but it needs
two operands A and B:

Rh ← xor table[ (C(Ah)� 8) || C(Bh) ] = C(Ah ⊕Bh) ,

Rl ← xor table[ (C(Al)� 8) || C(Bl) ] = C(Al ⊕Bl) .

Computation of type (iii). At first, one could implement Xtimes just like the
S-box as a one-operand full-length table access. This would add 8 more KBytes
to the implementation and disregard the linearity of the operation. Instead, one
can write the matrix M of Xtimes as:

M =



0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1


︸ ︷︷ ︸
Mh

︸ ︷︷ ︸
Ml

where Mh and Ml are two (8× 4) matrices such that M = [Mh||Ml]. Then,
this linear operation consists in a XOR of two products of an (8× 4) matrix by
a 4-bit vector:

M ·A = (Mh ·Ah
T )⊕ (Ml ·Al

T ) .

The necessary tables for Mh and Ml only use 256 bytes of non-volatile mem-
ory in total, which is almost negligible compared to the S-box .

6



4.1 Implementation performance and comparison

The whole implementation had to be done in assembly and using several macros.
The code could be smaller as loops had to be fully unrolled - our macros could
not easily allow use of variable indexes. The execution time is also reduced for the
same reason. The Key Expansion phase was on-the-fly and in constant weight
coding as well.
Encoded bytes were always written on registers previously set to 0, thereby
preventing any Hamming distance leakage of the form C(A)⊕C(B), which is not
constant weight. We compared our (3, 6)-code version to a C version of the AES
on the same platform. For a fair comparison, it was checked that the compiler did
optimize the unprotected version as much as possible. The results are enclosed
in Tab. 2.

Table 2. Implementation results

Version Speed (Cycles) Code size (Ko)

AES unprotected 3.490 2,8

AES using (3, 6)-code 14.625 24,0

From Tab. 2, one can conclude that the protected version of the AES using
(3, 6)-code is about 4, 2 times slower, and 8, 5 times bigger in code size.

In the following, we compare this implementation to existing higher-order
masking schemes applied to block ciphers. As the targeted platforms are dif-
ferent we can only evaluate the performance in terms of loss compared to an
unprotected version on the same platform, hence the scores in Tab. 3 are given
as factors (e.g. ×2 means the secured implementation is twice as slow as the
unprotected one on the same microcontroller).

From Tab. 3, one can see that the Rivain-Prouff masking scheme of order 3
applied to AES takes 271.000 cycles according to [19], whereas the unprotected
AES takes only 2.000 cycles. The performance loss would be ×135 in this case.

4.2 Fault detection capability and memory consumption

Only 256 bytes of each 4 KBytes table will be used by the cipher during normal
operation. This seems like a waste of space but actually yields a very interesting
feature of this countermeasure which is fault detection.

We filled all unused values of our tables with 0’s, a value which is not in
the (3, 6)-code. If a random byte fault occurs on the state of the AES, then the
0 value will be returned with probability (4096 − 256)/4096 = 93, 75%. This
makes a variant of an infective computation method [6], as the 0 will propagate
to all future operations within the cipher and the ciphertext will have 0 values in
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Table 3. Theoretical resistance of higher-order masking and constant weight schemes
against attacks in the Hamming Weight or Distance model.

Method and cipher Resistance Speed loss Fault

Order Detection

Higher-order masking schemes

Masking (AES) [9] 1 × 1,7 .

Rivain-Prouff (AES) [19] 1 ×64,0 .

Kim-Hong-Lim (AES) [11] 3 ×41,0 .

Genelle-Prouff (AES) [5] 3 ×90,0 .

Rivain-Prouff (PICARO) [19] 2 × 6,1 .

Constant weight Schemes

Dual-rail (PRESENT) [10] Any × 9,0 93,75 %

(3,6)-code (AES) Any × 4,2 93,75%

place of key-dependent values for the affected bytes. Testing whether a fault was
injected or not incurs no overhead (simple zero-test of ciphertext bytes). Also,
any one-bit fault can be detected. This fault detection rate provides a strong
advantage over all classical masking schemes, which do not inherently provide
this detection capability.

Another advantage worth mentioning is that the RAM cost of this constant
weight implementation is limited to 64 bytes (instead of 32 for the unprotected
variant). Although RAM costs increases with the order of the masking schemes,
in our case it is constant for any order.

5 Information theoretic analysis

As argued on the evaluation framework introduced in [24], the robustness of a
countermeasure encompasses two dimensions: its amount of leakage irrespective
of any attack strategy and its resistance to specific attacks. So, the evaluation
of protected implementations should hold in two steps. First, an information
theoretic analysis determines the actual information leakage. Second, a security
analysis determines the efficiency of various attacks in exploiting this leakage.

Following this evaluation framework, we start with an information theoretic
analysis. Under the Hamming weight assumption, it is obvious that the constant
weight countermeasure is leakage-free. In fact, the mutual information is null
since all manipulated variable have a constant Hamming weight. Therefore we
investigate the consequences of a leakage function deviating from the Hamming
Weight assumption on our proposed countermeasure. For instance, we assume
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that the leakage function is a polynomial of higher degree. Actually, the assump-
tion that all the bits leak identically and without interfering does not hold in
real hardware [25]. Also, it has been shown that with specific side channel cap-
turing systems the attacker can distort the measurement. For instance, in [18],
the authors show that with a home-made magnetic coil probing the circuit at a
crucial location, the rising edges can be forced to dissipate 17% more than the
falling edges.

Thus, we study how the the constant weight countermeasure is resilient to
imperfections of the leakage model. To do so, we consider the leakage function
used in [7], i.e. which is a polynomial one of the form:

L(Z) =
∑
i

ai · zi +
∑
i,j

bi,j · (zi · zj) +
∑
i,j,k

ci,j,k · (zi · zj · zk) , (1)

where zi denotes the ith bit of the sensitive value Z and ai, bi,j and ci,j,k are
some weighting coefficients.

To evaluate the information revealed by the constant weight countermea-
sure, we compute the Mutual Information Metric (MIM) between the sensitive
variable and the leakage function under two conditions:

1. First case: All bits of a sensitive variable leak identically, but interfere
with each other (i.e. in Eqn. (1) ∀i ai = a ∈ {0, 1}, ∀i, j bi,j = b ∈ {0, 1},
∀i, j, k ci,j,k = c ∈ {0, 1}).

2. Second case: The bits of a sensitive variable leak randomly and inter-
fere with each other (i.e. in Eqn. (1) ∀i ai ∈ {0, 1}, ∀i, j bi,j ∈ {0, 1},
∀i, j, k ci,j,k ∈ {0, 1}).

For the sake of comparison, we proceed similarly for several well-known coun-
termeasures. We list hereafter the considered implementations with their corre-
sponding leakage functions:

– Unprotected implementation : O = L(Z) + N , where N is a normally dis-
tributed noise variable of standard deviation σ (i.e. N ∼ N (0, σ2)).

– Rotating S-box Masking (RSM) [14]: O = L(Z ⊕M ′) + N , where M ′ is a
low entropy mask chosen within a code.

– Classical first-order Boolean masking3: O = L(Z ⊕M) ∗ L(M) + N , where
M is a full entropy mask.

– Leakage Squeezing4 [13]: O = L(Z ⊕ M) + L(B(M)) + N , where B is a
bijection chosen within a binary code as well.

– Dual-rail [10] : O = L(D(Z)) +N , where D is the dual-rail encoding.
– (3, 6)-code : O = L(C(Z)) +N .

3 For this implementation, the leakage corresponds to a bivariate attack, when the
product combination is used by the adversary.

4 This leakage function corresponds to a hardware implementation. To the best of
our knowledge, the leakage squeezing countermeasure has never been adapted into
a software implementation, therefore we only consider an univariate leakage in our
simulation.
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Table 4. MIM for polynomial leakage functions with perfect bits transition.
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5.1 First case: perfect bits transition

The results are shown in Tab. 4. It is noteworthy that the mutual information for
our constant weight countermeasure, as well as for the dual-rail countermeasure,
is null whatever σ is. In fact, if all bits leak identically, the leakage function
is always constant independently of the values of (a,b,c) and its degree has no
influence on the quantity of information leaked. However, the results of our
investigation show that for all other countermeasures, the higher the degree
of the leakage function, the higher the leaked information. For instance, if the
leakage function is a cubic one (i.e. c = 1), the RSM and the first-order masking
lead to a first-order security against bivariate side-channel attacks since the slope
of their corresponding MIM curves is equal to 2. Furthermore, these curves are
parallel to the one of the unprotected implementation. Concerning the leakage
squeezing countermeasure, it ensures a second-order security against univariate
side-channel attacks (i.e. the slope is equal to 3).
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5.2 Second case: random bits transition

In this case, we consider that the bits leak differently. From the results plotted
in Tab. 5, the following observations can be emphasized:

– Our proposed countermeasure offers a first-order resistance against univari-
ate side-channel attacks and remains all the same as good as the first-order
Boolean masking and the RSM countermeasure. In fact, their corresponding
MIM curves have a slope equal to 2.

– When considering high noise values, the quantity of mutual information
leaked by the constant weight countermeasure is lower than a first-order
masking, for instance. Hence, a first-order attack will succeed, but the ad-
versary will need more traces when dealing with the constant weight coun-
termeasure.

Table 5. MIM for polynomial leakage functions with random bits transition.
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6 Security analysis

As a complement to the information theoretic analysis carried out in Sec. 5,
we conduct in this section a security analysis to evaluate the resistance of our
proposed countermeasure.

6.1 Higher-order side-channel resistance in the Hamming weight
model

To prove the resistance of our countermeasure against higher-order SCA at-
tacks in the perfect Hamming model, we have computed the optimal correla-
tion coefficient defined in [21] by fopt(z) = E[ (O(Z) − E[O(Z)])d | Z = z ],
where O(Z) denotes the leakage function on the sensitive variable Z and satis-
fies O(Z) = HW (C(Z)) +N . The noise is denoted by N ∼ N (0, σ2). Then, the
optimal correlation coefficient rewrites:

fopt(z) = E[ (HW (C(Z)) +N − E[HW (C(Z)) +N ])d | Z = z ]

= E[ (HW (C(Z)) +N −HW (C(Z))− E[N ])d | Z = z ]

= E[ Nd ] .

The last equality is only dependent on the noise, not on the sensitive variable
Z = f(X,K), where f denotes any operation using the input variable X and
the key K. In that case this means the attack does not work, independently
of the order d. Note that switching from Hamming weight leakage protection
to Hamming distance protection only requires setting destination registers to
0 before storing the result of a sensitive operation into them. Therefore, this
security analysis applies for both leakage models, given a proper implementation.

6.2 Side-channel resistance in the imperfect model

In this section, we evaluate the soundness of the proposed constant weight im-
plementation when the leakage slightly deviates from the rules involved to design
this countermeasure. First, we analyse if our implementation shows some vul-
nerabilities against first-order CPA attack, and then we examine how robust it
is against a stochastic online attack [4]. The purpose of this stochastic approach
is to deduce the global activity associated to arbitrary chosen events occurring
during the encryption (typically a bit-flipping). Although the Hamming weight
of each manipulated word remains constant at any time, we expect that the
stochastic online approach can exploit differences from a bit register to another,
especially if the leakage function deviates from the Hamming weight model as
highlighted in the previous information theoretic analysis.

For comparison purpose, we computed the success rate of CPA and stochas-
tic online attack on an unsecured software implementation of AES over 1.000
independent experiments. Concerning the constant weight AES implementation,
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we performed these distinguishers over 20.000 independent experiments. In our
practical attack scenario, we considered the following simulated leakage model:

O =

8∑
i=1

ai · zi +N , (2)

where ai are some weighting coefficients following a Gaussian law N (1, σe),
zi is the ith bit of the sensitive value Z (equals S-box[X⊕K] for the unprotected
AES, and equals C(S-box[X⊕K]) for the (3, 6)-code constant weight implemen-
tation) and N is an environmental noise s.t. N ∼ N (0, σ). This model allows
us to simulate the leakages by taking into account a slight deviation from the
Hamming weight leakage model. The results of these attacks are shown on Fig. 1
for σe = 0.1 and σ = 2.
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Fig. 1. CPA and stochastic online attacks on unsecured AES implementation (left)
and constant weight implementation (right)

From Fig. 1 the following observations can be emphasized:

– As expected, the CPA attack is no longer efficient on the secured imple-
mentation even if the leakage model deviates from the Hamming weight
assumption.

– Considering the stochastic online attack results, one can see that the unpro-
tected implementation is easily broken. In fact, about 400 traces suffices to
achieve a success rate of 100%. As expected and revealed by the informa-
tion theoretic analysis, the (3, 6)-code implementation performs worse when
the bit-flipping is random. Indeed, the success rate of the stochastic online
attack reaches 100% with 140K traces, although this represents a gain of
robustness of about a factor 350.
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7 Conclusion

An investigation on whether the AES could be implemented in a constant weight
fashion on a 16-bit smartcard was conducted. Instead of using a dual-rail code, we
chose an ”m out of n” code that enables fast operations at an acceptable memory
cost. We have argued that our proposal is a leak-free countermeasure under some
realistic assumptions about the leakage model. The solution has been evaluated
within an information-theoretic study, proving its security against SCA under the
Hamming weight assumption. When the leakage function deviates slightly from
this assumption, our solution still achieves good results. On the performance side,
it was shown our (3, 6)-code AES is faster at execution than most generic higher-
order masking schemes, and also comes with some fault detection capability at
no cost; a feature which masking schemes lack.
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