
Memory Forensics of a Java Card
Dump

jean-louis.lanet@inria.fr

Cardis 2014 Paris
Nov. 5-7 2014

mailto:jean-louis.lanet@inria.fr

Episode 2

• Previous episode: how to obtain a dump

• Hypothesis

• Find the code

• Reverse it

• Conclusion

Memory Dump

• At that time we have a binary file representing the memory,

• Reversing is a hard task,
– E2prom has no region,

– Several heaps,

– Several binary languages,

– Unknown bye codes,

– Sometime masked sometime encrypted.

• Task prone to error and no tool to automatically reverse it,

• The objective: obtain from the binary dump the Java source
file.

From binary to source

• Starting point is the dump file where somewhere is the
method area,

• Reversing process
– Isolate the method area,

– Regenerate a CAP file,

– Tokenize the CAP

– Use the CAP2Class tool

– Use a Class2Java tool

Memory Carving

• Regenerate the memory regions
– Extract the Java Byte code area from the rest,

– Remaining could be:
• System Data, Application Data, VM Data, Native code

• Usual approach brute force
– Verify a legal control flow graph,

– Adapted to small pieces of code,

– We can not use byte code interpretation due to illegal byte code,

– We need a heuristic approach.

Limit of the approach

• It does not work if:
– the dump refers to encrypted byte code area not obtained with the

VM but using an array extension,

– the encrypted code has different key for different security context if
obtained by the VM using a getstatic,

– the card use a dynamic xor (Razandralambo, 2012)

• Works well:
– Code is in plain text

– Use a static xor.

Memory Carving

• Forensic Memory Carving,
– Using language recognition,

– Java and Assembly area,

– Array and Object structure

• Index of coincidence

– The value of IC for Java Card byte code in a CAP file is between 0.02
and 0.06

Memory Carving

Symbolic execution

• Building the different CFG,

• By hypothesis we do not have the *.exp file of the applet,

• Identifying the beginning of each method,
– Checking the stack evolution in term of type system,

– Isolate the unknown instructions with their effects on the stack,

• As a result a set of grouped methods with 2..4 entry points:
– process, install, select, deselect,

– The others are private methods plus the constructor,
• (aload_0; invokespecial 0;…)

• Sometime proprietary instructions…

Reversing

• At that step we have identified the different method areas,

• We have to rebuilt the CAP components from the method
component.

Resolve the names
and rebuild

• Thanks to (Hamadouche, 2012) we have the relationship
between addresses and method names,
– This is the way to identify register(), ifSelectingApplet() that

characterize install() and process(),

– It allows to define the import component and then the class
component,

• Rebuild the header and the applet,

• Issue:
– the staticField component initialization: current value or default

value

– the accessor of the attributes defined in the class are lost.

Finish the CAP

• Some instructions in method require parameters that must be
un resolve,

• Generate the tokens and build the reference location and
the constant pool components.

• Build the descriptor component that has all the offsets of
each component.

Obtain the source code

• Students designed a “Partial
Linked Cap to Unresolved
Cap” tool,

• Validated using the BCV,

• Not completely automated,

• But no reason to not
succeed,

• When packaged could be
open source.

Conclusion

• This engineering work has been done by students of a master
degree (M1) from the University of Limoges during their Java
course,

• It was a 60 hours development project (5 students), around
300 hours,

• Entirely written in Java, could be provided as an open source
project if they want to package their work,

• A good introduction to Java Card course.

Question ?

