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Episode 2

Previous episode: how to obtain a dump
Hypothesis

Find the code

Reverse it

Conclusion



Memory Dump

At that time we have a binary file representing the memory,

Reversing is a hard task,

— E2prom has no region,

— Several heaps,

— Several binary languages,

— Unknown bye codes,

— Sometime masked sometime encrypted.

Task prone to error and no tool to automatically reverse it,

The objective: obtain from the binary dump the Java source
file.
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~ 5  From binary to source

e Starting point is the dump file where somewhere is the
method area,

* Reversing process
— Isolate the method area,

— Regenerate a CAP file,
— Tokenize the CAP

— Use the CAP2Class tool
— Use a Class2Java tool




Memory Carving

Regenerate the memory regions
— Extract the Java Byte code area from the rest,

— Remaining could be:
» System Data, Application Data, VM Data, Native code

Usual approach brute force

— Verify a legal control flow graph,

— Adapted to small pieces of code,

— We can not use byte code interpretation due to illegal byte code,
— We need a heuristic approach.
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Limit of the approach ==

* |t does not work if:

— the dump refers to encrypted byte code area not obtained with the
VM but using an array extension,

— the encrypted code has different key for different security context if
obtained by the VM using a getstatic,

— the card use a dynamic xor (Razandralambo, 2012)
* Works well:

— Code is in plain text
— Use a static xor.



Memory Carving

* Forensic Memory Carving,
— Using language recognition,
— Java and Assembly area,

— Array and Object structure

* |ndex of coincidence
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— The value of IC for Java Card byte code in a CAP file is between 0.02
and 0.06



emory Carving
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Addresses in the memory snapshot



Symbolic execution

Building the different CFG,
By hypothesis we do not have the *.exp file of the applet,
|dentifying the beginning of each method,

— Checking the stack evolution in term of type system,
— Isolate the unknown instructions with their effects on the stack,

As a result a set of grouped methods with 2..4 entry points:

— process, install, select, deselect,

— The others are private methods plus the constructor,
* (aload 0; invokespecial 0;...)

* Sometime proprietary instructions...



Reversing

e At that step we have identified the different method areas,

 We have to rebuilt the CAP components from the method
component.
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Resolve the names ©
and rebuild -

Thanks to (Hamadouche, 2012) we have the relationship
between addresses and method names,

— This is the way to identify register (), ifSelectingApplet () that
characterize install () and process(),

— It allows to define the import component and then the class
component,

Rebuild the header and the applet,
Issue:

— the staticField component initialization: current value or default
value

— the accessor of the attributes defined in the class are lost.



Finish the CAP

Some instructions in method require parameters that must be
un resolve,

Generate the tokens and build the reference location and
the constant pool components.

Build the descriptor component that has all the offsets of
each component.



Obtain the source code

Students designed a “Partial
Linked Cap to Unresolved
Cap” tool,

Validated using the BCV,
Not completely automated,

But no reason to not
succeed,

When packaged could be
open source.
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Conclusion

This engineering work has been done by students of a master

degree (M1) from the University of Limoges during their Java
course,

It was a 60 hours development project (5 students), around
300 hours,

Entirely written in Java, could be provided as an open source
project if they want to package their work,

A good introduction to Java Card course.
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Question ?



