Memory Forensics of a Java Card
Dump

jean-louis.lanet@inria.fr

Cardis 2014 Paris
Nov. 5-7 2014

mailto:jean-louis.lanet@inria.fr

Episode 2

Previous episode: how to obtain a dump
Hypothesis

Find the code

Reverse it

Conclusion

Memory Dump

At that time we have a binary file representing the memory,

Reversing is a hard task,

— E2prom has no region,

— Several heaps,

— Several binary languages,

— Unknown bye codes,

— Sometime masked sometime encrypted.

Task prone to error and no tool to automatically reverse it,

The objective: obtain from the binary dump the Java source
file.

11110100

~ 5 From binary to source

e Starting point is the dump file where somewhere is the
method area,

* Reversing process
— Isolate the method area,

— Regenerate a CAP file,
— Tokenize the CAP

— Use the CAP2Class tool
— Use a Class2Java tool

Memory Carving

Regenerate the memory regions
— Extract the Java Byte code area from the rest,

— Remaining could be:
» System Data, Application Data, VM Data, Native code

Usual approach brute force

— Verify a legal control flow graph,

— Adapted to small pieces of code,

— We can not use byte code interpretation due to illegal byte code,
— We need a heuristic approach.

Y, !

Limit of the approach ==

* |t does not work if:

— the dump refers to encrypted byte code area not obtained with the
VM but using an array extension,

— the encrypted code has different key for different security context if
obtained by the VM using a getstatic,

— the card use a dynamic xor (Razandralambo, 2012)
* Works well:

— Code is in plain text
— Use a static xor.

Memory Carving

* Forensic Memory Carving,
— Using language recognition,
— Java and Assembly area,

— Array and Object structure

* |ndex of coincidence

Z’Hz(ﬂz — 1)

==

— The value of IC for Java Card byte code in a CAP file is between 0.02
and 0.06

emory Carving

0.06 . T T T 300D bt 0.2
+HE op. + ' ! ! " Java Gard Byte Code IG |
! ! Begin of the method's area - - -
0.18 1 1 End of the method's area - - - |
ot ++ + . Sliding windows’'s size = 100
009 1 Sliding windows’s size =120 ——
+ " 0.16 ! ' || Sliding windows’s size = 135 —— |_|
: 1 1 || Sliding windows's size = 150
| | Sliding windows's size =200 ——
+ + + 0.14 1 iyt
| BN A |
+ + 2 012 1 1
% I ”) I ’
= 1 1
+HH i S
003 | . £ 01 ' i
8 1 1
+ H+ + b . .
= 0.08
% 1
0.02 | + o+ | g !
’ 0.06 I
L 1
0.04 1 1
001 ¢ - : :
0.02 i 1 i
v .
o [T = - '
(S —— 0x100 0x180 0x200 0x280 0x300 0x380 Ox400 0x480 0x500 Ox580 Ox600 Ox680

32700 32750 32800 32850 32900 32650 33000 33050

Addresses in the memory snapshot

Symbolic execution

Building the different CFG,
By hypothesis we do not have the *.exp file of the applet,
|dentifying the beginning of each method,

— Checking the stack evolution in term of type system,
— Isolate the unknown instructions with their effects on the stack,

As a result a set of grouped methods with 2..4 entry points:

— process, install, select, deselect,

— The others are private methods plus the constructor,
* (aload 0; invokespecial 0;...)

* Sometime proprietary instructions...

Reversing

e At that step we have identified the different method areas,

 We have to rebuilt the CAP components from the method
component.

. Tmport Class
1 Component | Component
C tant
Method Static Field enstatt
> Pool
Component Component
Component
Header | Directory | Descriptor |
Component | | Component | Component |
Applet
Component,

Resolve the names ©
and rebuild -

Thanks to (Hamadouche, 2012) we have the relationship
between addresses and method names,

— This is the way to identify register (), ifSelectingApplet () that
characterize install () and process(),

— It allows to define the import component and then the class
component,

Rebuild the header and the applet,
Issue:

— the staticField component initialization: current value or default
value

— the accessor of the attributes defined in the class are lost.

Finish the CAP

Some instructions in method require parameters that must be
un resolve,

Generate the tokens and build the reference location and
the constant pool components.

Build the descriptor component that has all the offsets of
each component.

Obtain the source code

Students designed a “Partial
Linked Cap to Unresolved
Cap” tool,

Validated using the BCV,
Not completely automated,

But no reason to not
succeed,

When packaged could be
open source.

/7 method component .method {
646652 GO1d 2063 0oc2 Held handler_count : 4
P068 BORI Bl ooeo aagz exception_ handler‘[B]{

GeEE 51 10 1R Ed8R 9718 BEb21 @17a

2235
Bfff
2813
18684

gc3d coff se3b 7abl 1884 7EGS 1873
7288 1673 8149 8478 8116 1842 7EB1

FEBB 1873 8323

8368 B37a 1885 BE11R

B118
BiBR
BBeh

1c¢la 8318 ca3s
c678 1c2e 1157
7oB0 2884 1139

198k 8181 2d18 Bbal
1218 8781 1Blc¢ 1838
la@4 18fe 3E11 99949
B9Bd BEcEe 1199 9984
998d BREcE 1584 9373

start_offzet
bitfield
handler_offset

catch_type_index

exception_ handlEP[l]{

start_pffset
bitfield
handler_offset

catch_type_index -

}

exception_ handler[z]{

start_pffset
bitfield
handler_offset

catch_type_index -

exception_handler[3]]

start_pffset
bitfield
handler_offset

catch_type_index :

.
ca

method_info[e] // @ee2l= |

// flags
£ max_stack :
{f nargs
// max_locals:

Bytecodes. ..

X

}

. n method_infel]

B

1
i1
a8

Conclusion

This engineering work has been done by students of a master

degree (M1) from the University of Limoges during their Java
course,

It was a 60 hours development project (5 students), around
300 hours,

Entirely written in Java, could be provided as an open source
project if they want to package their work,

A good introduction to Java Card course.

S
e ——
e U, JT—

< —
e
& 2

VadP

Question ?

