
Heap … Hop !
Heap is also Vulnerable

jean-louis.lanet@inria.fr
Join work with TU Graz & NXP Austria

Cardis 2014 Paris
Nov. 5-7, 2014

mailto:jean-louis.lanet@inria.fr

Agenda

• Memory dump optimization

• Basic type confusion

• Counter measure: the typed stack

• Counter the counter measure

• BCV is there: is that a problem ? Not at all…

Memory confidentiality

• Code is an asset,

• Two ways to read the unreadable code
– Execute an arbitrary shell code, (Cartigny, 2010; Bouffard 2011)

– Move the boundaries of an array, (Poll, 2004)

• Executing a shell code
– Reading and writing in memory requires a get/putstatic

– The parameter that follows is the address to read/write

– Runs well but stress the memory

Stressing the memory

• Reading a two bytes memory needs to write two bytes
0x8800 getstatic_s 0xb000 //push the content of 0xb000

0x8803 sreturn

• The parameter is an onboard linked token,

• The shell code is written in a permanent array
– To read the next memory cell one needs to write in the array

– [0x7d 0xb0 0x00 0x78] => [0x7d 0xb0 0x02 0x78]

• Once on top of the stack, the value is stored in the apdu
buffer and sent out

Optimization

• Use a Transient array,
– Header is permanent data are transient

– Transient Array

Size Type Ctx Size @

Ram

• Use a Transient array,
– Header is permanent data are transient

void modify_add (short address_transient_array) {

aload_1 // start of the dump area

putstatic_s @TRANSIENT_ARRAY_ADDRESS

return

}

Size Type Ctx Size @

Optimization

• Read the Array that contains code,
voidReadTransient(APDU apdu){

apdu.setOutgoing();

apdu.setOutgoingLength();

Util.arrayCopy(transientArray, (short)0,

apdu.getBuffer(), (short)0, (short)

transientArray.length);

apdu.sendBytes((short) transientArray.length);

return

}

• We just moved the boundaries of the Array,

• Run well on a lot of cards due to the hypothesis that we do not use
a BCV,

• New cards embedded dynamic in particular a typed stack.

Optimization

Typed Stack

• It runs well because (aload_1, putstatic_s) allows a type
confusion

• Typed stack => control dynamically the type
– Dual stack, Split stack (Dubreuil, 2012), HW typed stack (Lackner,

2012)

ref
…

aload 1

@xxxx
…

• They protect the attack path not
the asset !

Heap type confusion

• The fields must be dynamically typed also !
aload 1

putfield_a_this 0

getfield_s_this 0

sreturn

short
…

getfield_s_this 0

@xxxx
…

@xxxx

Field 0

Relaxing the hypothesis

• A dynamic type checking must be complete.

• But we have a strong hypothesis: there is no BCV.
– It checks the structure and the semantics of the applet’s byte code.

– To verify the semantics, the BCV starts its analyze from an entry point.

– Dead code has not entry point => It is not checked by the BCV.

– So … we can hide our malicious byte code as dead code.

Relaxing the hypothesis
• Remind Cardis 2010 Barbu et al. or Cardis 2010 Vetillard et al.

void abuseBCV () {

04 // flags: 0 max_stack: 4

03 // nargs: 0 max_locals: 3

/∗005B∗/ L0: aload 1

…

/∗0066∗/ L1: astore_3

L2: ... // Set of instruction

/∗0163∗/ if_scmpeq_w 0xFF05 // => L2

/∗0166∗/ return

/∗0167∗/ aload 1

/∗016A∗/ putfield_a_this 0

/∗016A∗/ getfield_s_this 0

/∗016A∗/ sreturn

Relaxing the hypothesis
• Laser fault as a logical attack enabler

void abuseBCV () {

04 // flags: 0 max_stack: 4

03 // nargs: 0 max_locals: 3

/∗005B∗/ L0: aload 1

…

/∗0066∗/ L1: astore_3

L2: ... // Set of instruction

/∗0163∗/ if_scmpeq_w 0x0005 // => L2

/∗0166∗/ return

/∗0167∗/ aload 1

/∗016A∗/ putfield_a_this 0

/∗016A∗/ getfield_s_this 0

/∗016A∗/ sreturn

Protect the asset

• Many run time counter measures,

• The naïve solution is to type the heap,

• The good one is just to put a checksum on the header of
transient array.

Size Type Ctx Size @ checksum

Evaluation

• Metrics obtained on our Java Card VM compiled on a 8051 8-
bit platform

• Checksum with a simple xor on one byte

• Overhead during array creation not significant
– JCSystem.makeTransientByteArray () has a long execution

time and time variable,

• Overhead during array access
– aaload, sstore, arrayLength is between 20% and 30%

• Balanced with the opcode distribution in a given program
– Remind the Mesure project

– Wallet + 0.9%

Conclusion

• The first idea was to optimize a previous attack,
– Evaluated on recent smart cards that embed dynamic CM,

– Found a new attack path to gain access to the asset,

• Never rely on the fact that a BCV must be used,

• Move from static security to run time check,

• Identify the assets and protect them,

• Do not protect the attack paths but the asset.

Question ?

Yeah we dump it…

